Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_3_a10, author = {V. S. Sekovanov}, title = {On some discrete nonlinear dynamical systems}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {185--199}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a10/} }
V. S. Sekovanov. On some discrete nonlinear dynamical systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 185-199. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a10/
[1] Grinchenko V. T., Matsibura V. T., Snarskii A. A., Vvedenie v nelineinuyu dinamiku: Khaos i fraktaly, Izd-vo LKI, M., 2007
[2] Kronover R. M., Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000
[3] Malinetskii G. G., Matematicheskie osnovy sinergetiki. Khaos, struktury, vychislitelnyi eksperiment, KomKniga, M., 2005
[4] Mandelbrot B., Fraktalnaya geometriya prirody, Institut kompyuternykh issledovanii, RKhD, M.–Izhevsk, 2010
[5] Sekovanov V. S., “O mnozhestvakh Zhyulia nekotorykh ratsionalnykh funktsii”, Vestn. KGU im. N. A. Nekrasova, 18:2 (2012), 23–28
[6] Sekovanov V. S., “Otobrazhenie «Koshka Arnolda» i metodika ego izucheniya”, Vestn. KGU im. N. A. Nekrasova, 19:2 (2013), 143–149
[7] Sekovanov V. S., Elementy teorii fraktalnykh mnozhestv, Librokom, M., 2013.
[8] Sekovanov V. S., Chto takoe fraktalnaya geometriya?, Sinergetika: ot proshlogo k buduschemu. Ser. 75, 114, Lenand, M., 2016.
[9] Sekovanov V. S., Kozyrev S. B., “Preodolenie stereotipov myshleniya pri rassmotrenii ponyatiya «fraktalnaya razmernost mnozhestva»”, Vestn. KGU im. N. A. Nekrasova, 12:7 (2006), 87–93
[10] Shreder M., Fraktaly, khaos, stepennye zakony. Miniatyury iz beskonechnogo raya, RKhD, Izhevsk, 2005
[11] Shuster G., Determinirovannyi khaos, Mir, M., 1988 | MR