On some discrete nonlinear dynamical systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 185-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the spectrum of the Hénon map and the spectrum of the baker's map. The character of fixed points of the Hénon map and randomness of the baker's map are analyzed. Attractors of the modified Hénon map and the modified baker's map are considered; cases where attractors are fractal sets are selected.
@article{FPM_2016_21_3_a10,
     author = {V. S. Sekovanov},
     title = {On some discrete nonlinear dynamical systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {185--199},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a10/}
}
TY  - JOUR
AU  - V. S. Sekovanov
TI  - On some discrete nonlinear dynamical systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 185
EP  - 199
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a10/
LA  - ru
ID  - FPM_2016_21_3_a10
ER  - 
%0 Journal Article
%A V. S. Sekovanov
%T On some discrete nonlinear dynamical systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 185-199
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a10/
%G ru
%F FPM_2016_21_3_a10
V. S. Sekovanov. On some discrete nonlinear dynamical systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 185-199. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a10/

[1] Grinchenko V. T., Matsibura V. T., Snarskii A. A., Vvedenie v nelineinuyu dinamiku: Khaos i fraktaly, Izd-vo LKI, M., 2007

[2] Kronover R. M., Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000

[3] Malinetskii G. G., Matematicheskie osnovy sinergetiki. Khaos, struktury, vychislitelnyi eksperiment, KomKniga, M., 2005

[4] Mandelbrot B., Fraktalnaya geometriya prirody, Institut kompyuternykh issledovanii, RKhD, M.–Izhevsk, 2010

[5] Sekovanov V. S., “O mnozhestvakh Zhyulia nekotorykh ratsionalnykh funktsii”, Vestn. KGU im. N. A. Nekrasova, 18:2 (2012), 23–28

[6] Sekovanov V. S., “Otobrazhenie «Koshka Arnolda» i metodika ego izucheniya”, Vestn. KGU im. N. A. Nekrasova, 19:2 (2013), 143–149

[7] Sekovanov V. S., Elementy teorii fraktalnykh mnozhestv, Librokom, M., 2013.

[8] Sekovanov V. S., Chto takoe fraktalnaya geometriya?, Sinergetika: ot proshlogo k buduschemu. Ser. 75, 114, Lenand, M., 2016.

[9] Sekovanov V. S., Kozyrev S. B., “Preodolenie stereotipov myshleniya pri rassmotrenii ponyatiya «fraktalnaya razmernost mnozhestva»”, Vestn. KGU im. N. A. Nekrasova, 12:7 (2006), 87–93

[10] Shreder M., Fraktaly, khaos, stepennye zakony. Miniatyury iz beskonechnogo raya, RKhD, Izhevsk, 2005

[11] Shuster G., Determinirovannyi khaos, Mir, M., 1988 | MR