Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_3_a1, author = {G. G. Arakelov and A. V. Gribov and A. V. Mikhalev}, title = {Applied homomorphic cryptography: examples}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {25--38}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a1/} }
TY - JOUR AU - G. G. Arakelov AU - A. V. Gribov AU - A. V. Mikhalev TI - Applied homomorphic cryptography: examples JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 25 EP - 38 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a1/ LA - ru ID - FPM_2016_21_3_a1 ER -
G. G. Arakelov; A. V. Gribov; A. V. Mikhalev. Applied homomorphic cryptography: examples. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 25-38. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a1/
[1] Burtyka F. B., “Simmetrichnoe polnostyu gomomorfnoe shifrovanie s ispolzovaniem neprivodimykh matrichnykh polinomov”, Izv. YuFU. Tekhn. nauki, 2014, 107–122
[2] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Lan, SPb., 2015
[3] Gribov A. V., Zolotykh P. A., Mikhalev A. V., “Postroenie algebraicheskoi kriptosistemy nad kvazigruppovym koltsom”, Matematicheskie voprosy kriptografii, 1:4 (2010), 23–32
[4] Katyshev S. Yu., Markov V. T., Nechaev A. A., “Ispolzovanie neassotsiativnykh gruppoidov dlya realizatsii protsedury otkrytogo raspredeleniya klyuchei”, Diskret. matem., 26:3 (2014), 45–64 | DOI
[5] Kuzmin A. S., Markov V. T., Mikhalev A. A., Mikhalev A. V., Nechaev A. A., “Kriptograficheskie algoritmy na gruppakh i algebrakh”, Fundament. i prikl. matem., 20:1 (2015), 205–222
[6] Boneh D., Sahai A., Waters B., “Functional encryption: Definitions and challenges”, Theory Cryptography, 2011, 253–273 | MR | Zbl
[7] Boneh D., Gentry C., Halevi S., Wang F., Wu D. J., “Private database queries using somewhat homomorphic encryption”, Applied Cryptography and Network Security, 11th Int. Conf., ACNS 2013 (Banff, AB, Canada, June 25–28, 2013), Lect. Notes Comp. Sci. Security Cryptology, 7954, eds. M. Jacobson, M. Locasto, P. Mohassel, R. Safavi-Naini, Springer, Berlin, 2013, 102–118 | Zbl
[8] Cash D., Jaeger J., Jarecki St., Jutla Ch., Krawczyk H., Rosu M.-C., Steiner M., “Highly-scalable searchable symmetric encryption with support for Boolean queries”, Advances in Cryptology, CRYPTO 2013, Lect. Notes Comp. Sci. Security Cryptology, 8042, eds. R. Canetti, J. A. Garay, Springer, Berlin, 2013, 353–373 | Zbl
[9] Cash D., Jaeger J., Jarecki St., Jutla Ch., Krawczyk H., Rosu M.-Cat., Steiner M., Dynamic Searchable Encryption in Very-Large Databases: Data Structures and Implementation, Cryptology ePrint Archive, Report 2014/853
[10] Curtmola R., Garay J., Kamara S., Ostrovsky R., “Searchable symmetric encryption: improved definitions and efficient constructions”, Proc. 13th ACM Conf. Computer Communication Security, ACM, New York, 2006
[11] Gentry C., A Fully Homomorphic Encryption Scheme, Ph. D. thesis, Stanford Univ., 2009 | Zbl
[12] Gorbunov S., Vaikuntanathan V., Wee H., “Functional encryption with bounded collusions via multi-party computation”, Advances in Cryptology, CRYPTO 2012, Lect. Notes Comp. Sci., 7417, eds. Safavi-Naini R., Canetti R., Springer, Berlin, 2012, 162–179 | DOI | MR | Zbl
[13] Song D., Wagner D., Perrig A., “Practical techniques for searches on encrypted data”, Proc. 2000 IEEE Symp. Security and Privacy, SP '00, Univ. California, Berkeley, 2000
[14] Stehle D., Steinfeld R., “Faster fully homomorphic encryption”, Advances in Cryptology, ASIACRYPT 2010: 16th Int. Conf. on the Theory and Application of Cryptology and Information Security (Singapore, December 5–9, 2010), Lect. Notes Comp. Sci., 6477, Springer, Berlin, 2010, 377–394 | DOI | MR | Zbl