The canonical ensemble of open self-avoiding strings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Statistical models of a single open string avoiding self-intersections in the $ d $-dimensional Euclidean space $\mathbb{R}^{d}$, $ 2\leq d 4$, and the ensemble of strings are considered. The presentation of these models is based on the Darwin–Fowler method, used in statistical mechanics to derive the canonical ensemble. The configuration of the string in space $\mathbb{R}^{d}$ is described by its contour length $ L $ and the spatial distance $ R $ between its ends. We establish an integral equation for a transformed probability density $ W(R,L) $ of the distance $ R $ similar to the known Dyson equation, which is invariant under the continuous group of renormalization transformations. This allows us using the renormalization group method to investigate the asymptotic behavior of this density in the case where $ R\rightarrow \infty $ and $ L \rightarrow \infty $. For the model of an ensemble of $ M $ open strings with the mean string contour length over the ensemble given by $\bar{L} $, we obtain the most probable distribution of strings over their lengths in the limit as $ M\rightarrow \infty $. Averaging the probability density $ W(R,L) $ over the canonical ensemble eventually gives the sought density $ \langle W(R,L) \rangle $.
@article{FPM_2016_21_3_a0,
     author = {V. I. Alkhimov},
     title = {The canonical ensemble of open self-avoiding strings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a0/}
}
TY  - JOUR
AU  - V. I. Alkhimov
TI  - The canonical ensemble of open self-avoiding strings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 3
EP  - 23
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a0/
LA  - ru
ID  - FPM_2016_21_3_a0
ER  - 
%0 Journal Article
%A V. I. Alkhimov
%T The canonical ensemble of open self-avoiding strings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 3-23
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a0/
%G ru
%F FPM_2016_21_3_a0
V. I. Alkhimov. The canonical ensemble of open self-avoiding strings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 3-23. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a0/

[1] Alkhimov V. I., “$d$-mernaya model kanonicheskogo ansamblya otkrytykh strun”, Teor. i matem. fiz., 180:1 (2014), 140–160 | MR

[2] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[4] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR

[5] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[6] Khuang K., Statisticheskaya mekhanika, Mir, M., 1966

[7] Bridges D., Spencer T., “Self-avoiding walk in 5 or more dimensions”, Comm. Math. Phys., 97 (1985), 125–148 | DOI | MR

[8] Gell-Mann M., Low F., “Quantum electrodynamics at small distances”, Phys. Rev., 95 (1954), 1300–1312 | DOI | MR | Zbl

[9] Hara T., Slade G., “The lace expansion for self-avoiding walk in five or more dimensions”, Rev. Math. Phys., 4 (1992), 235–327 | DOI | MR | Zbl