Goldie rings graded by a group with periodic quotient group modulo the center
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 187-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study gr-prime and gr-semiprime Goldie rings graded by a group with periodic quotient group modulo the center. We enhance the theorem of Goodearl and Stafford (2000) about gr-prime rings graded by Abelian groups; we extend the Abelian group class to the class of groups with periodic quotient group modulo the center. We also decompose the orthogonal graded completion $O^{\mathrm{gr}}(R)$ of a gr-semiprime Goldie ring $R$ (graded by a group satisfying the same condition) into a direct sum of gr-prime Goldie rings $R_1,\dots, R_n$ and prove that the maximal graded quotient ring $Q^{\mathrm{gr}}(R)$ equals the direct sum of classical graded quotients rings of $R_1,\dots, R_n$.
@article{FPM_2016_21_2_a7,
     author = {A. L. Kanunnikov},
     title = {Goldie rings graded by a group with periodic quotient group modulo the center},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {187--191},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a7/}
}
TY  - JOUR
AU  - A. L. Kanunnikov
TI  - Goldie rings graded by a group with periodic quotient group modulo the center
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 187
EP  - 191
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a7/
LA  - ru
ID  - FPM_2016_21_2_a7
ER  - 
%0 Journal Article
%A A. L. Kanunnikov
%T Goldie rings graded by a group with periodic quotient group modulo the center
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 187-191
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a7/
%G ru
%F FPM_2016_21_2_a7
A. L. Kanunnikov. Goldie rings graded by a group with periodic quotient group modulo the center. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 187-191. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a7/

[1] Balaba I. N., Kanunnikov A. L., Mikhalev A. V., “Graduirovannye koltsa chastnykh assotsiativnykh kolets. I”, Fundament. i prikl. matem., 17:2 (2011/2012), 3–74 | MR

[2] Kanunnikov A. L., “Graduirovannye varianty teoremy Goldi”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2011, no. 3, 46–50 | MR | Zbl

[3] Kanunnikov A. L., “Graduirovannye varianty teoremy Goldi. II”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2013, no. 3, 47–51 | MR | Zbl

[4] Kanunnikov A. L., “Ortogonalnoe graduirovannoe popolnenie graduirovanno polupervichnykh kolets”, Fundament. i prikl. matem., 18:7 (2013), 117–150

[5] Goodearl K., Stafford T., “The graded version of Goldie's theorem”, Contemp. Math., 259 (2000), 237–240 | DOI | MR | Zbl

[6] Năstăsescu C., Nauwelaerts E., van Oystaeyen F., “Arithmetically graded rings revisited”, Commun. Algebra, 14:10 (1986), 1191–2017 | MR

[7] Năstăsescu C., van Oystaeyen F., Graded and Filtered Rings and Modules, Lect. Notes Math., 758, Springer, Berlin, 1979 | MR

[8] Nastasescu C., van Oystaeyen F., Graded Ring Theory, North-Holland, Amsterdam, 2004 | MR