Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_2_a7, author = {A. L. Kanunnikov}, title = {Goldie rings graded by a group with periodic quotient group modulo the center}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {187--191}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a7/} }
TY - JOUR AU - A. L. Kanunnikov TI - Goldie rings graded by a group with periodic quotient group modulo the center JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 187 EP - 191 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a7/ LA - ru ID - FPM_2016_21_2_a7 ER -
A. L. Kanunnikov. Goldie rings graded by a group with periodic quotient group modulo the center. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 187-191. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a7/
[1] Balaba I. N., Kanunnikov A. L., Mikhalev A. V., “Graduirovannye koltsa chastnykh assotsiativnykh kolets. I”, Fundament. i prikl. matem., 17:2 (2011/2012), 3–74 | MR
[2] Kanunnikov A. L., “Graduirovannye varianty teoremy Goldi”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2011, no. 3, 46–50 | MR | Zbl
[3] Kanunnikov A. L., “Graduirovannye varianty teoremy Goldi. II”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2013, no. 3, 47–51 | MR | Zbl
[4] Kanunnikov A. L., “Ortogonalnoe graduirovannoe popolnenie graduirovanno polupervichnykh kolets”, Fundament. i prikl. matem., 18:7 (2013), 117–150
[5] Goodearl K., Stafford T., “The graded version of Goldie's theorem”, Contemp. Math., 259 (2000), 237–240 | DOI | MR | Zbl
[6] Năstăsescu C., Nauwelaerts E., van Oystaeyen F., “Arithmetically graded rings revisited”, Commun. Algebra, 14:10 (1986), 1191–2017 | MR
[7] Năstăsescu C., van Oystaeyen F., Graded and Filtered Rings and Modules, Lect. Notes Math., 758, Springer, Berlin, 1979 | MR
[8] Nastasescu C., van Oystaeyen F., Graded Ring Theory, North-Holland, Amsterdam, 2004 | MR