The Kostrikin radical and similar radicals of Lie algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 157-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existing notion of the Kostrikin radical as a radical in the Kurosh–Amitsur sence on classes of Mal'tsev algebras over rings with $1/6$ is not completely justified. More precisely, to the full it is true for classes of Lie algebras over fields of characteristic zero and, as shown in the given paper, classes of algebraic Lie algebras of degree not greater than $n$ over rings with $1/n!$ at all ${n\geq 1}$. Similar conclusions are obtained in the paper also for the Jordan, regular, and extremal radicals constructed analogously to the Kostrikin radical.
@article{FPM_2016_21_2_a5,
     author = {A. Yu. Golubkov},
     title = {The {Kostrikin} radical and similar radicals of {Lie} algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {157--180},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a5/}
}
TY  - JOUR
AU  - A. Yu. Golubkov
TI  - The Kostrikin radical and similar radicals of Lie algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 157
EP  - 180
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a5/
LA  - ru
ID  - FPM_2016_21_2_a5
ER  - 
%0 Journal Article
%A A. Yu. Golubkov
%T The Kostrikin radical and similar radicals of Lie algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 157-180
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a5/
%G ru
%F FPM_2016_21_2_a5
A. Yu. Golubkov. The Kostrikin radical and similar radicals of Lie algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 157-180. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a5/

[1] Andrunakievich V. A., Ryabukhin V. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[2] Beidar K. I., Pikhtilkov S. A., “O pervichnom radikale spetsialnykh algebr Li”, UMN, 49:1 (1994), 233 | MR | Zbl

[3] Golubkov A. Yu., “Konstruktsii spetsialnykh radikalov algebr”, Fundament. i prikl. matem., 20:1 (2015), 57–133

[4] Golubkov A. Yu., “Lokalnaya konechnost algebr”, Fundament. i prikl. matem., 19:6 (2014), 25–75

[5] Grishkov A. N., “O lokalnoi nilpotentnosti ideala algebry Li, porozhdennogo elementami 2-go poryadka”, Sib. matem. zhurn., 23:1 (1982), 181–182 | MR | Zbl

[6] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[7] Zhevlakov K. A., Shestakov I. P., “O lokalnoi konechnosti v smysle Shirshova”, Algebra i logika, 12:1 (1973), 41–73 | MR

[8] Zelmanov E. I., “Algebry Li s algebraicheskim prisoedinennym predstavleniem”, Matem. sb., 121 (163):4 (8) (1983), 545–561 | MR

[9] Zelmanov E. I., “Kharakterizatsiya radikala Makkrimmona”, Sib. matem. zhurn., 25:5 (1984), 190–192 | MR | Zbl

[10] Zelmanov E. I., Kostrikin A. I., “Teorema o sendvichevykh algebrakh”, Tr. MIAN SSSR, 183, 1988, 106–111

[11] Kostrikin A. I., “Koltsa Li, udovletvoryayuschie usloviyu Engelya”, Izv. AN SSSR. Ser. matem., 21 (1957), 515–540 | Zbl

[12] Kostrikin A. I., “O probleme Bernsaida”, Izv. AN SSSR. Ser. matem., 23 (1959), 3–34 | Zbl

[13] Kostrikin A. I., Vokrug Bernsaida, Nauka, M., 1986 | MR

[14] Plotkin B. I., “Ob algebraicheskikh mnozhestvakh elementov v gruppakh i algebrakh Li”, UMN, 13:6 (1958), 133–138 | MR | Zbl

[15] Filippov V. T., “O nil-elementakh indeksa $2$ v algebrakh Maltseva”, Sib. matem. zhurn., 22:3 (1981)

[16] Schukin K. K., “$\mathrm{RI}^*$-razreshimyi radikal grupp”, Matem. sb., 52:4 (1966), 1024–1031

[17] Amayo R. K., Stewart I. N., Infinite dimensional Lie algebras, Noordhoof, Leyden, 1974 | MR | Zbl

[18] Benkart G., “On inner ideals and $\mathrm{ad}$-nilpotent elements of Lie algebras”, Trans. Amer. Math. Soc., 232 (1977), 61–81 | DOI | MR | Zbl

[19] Draper Fontanals C., Fernández López A., García E., Gómez Lozano M., “The socle of a non-degenerate Lie algebra”, J. Algebra, 319 (2008), 2372–2394 | DOI | MR | Zbl

[20] Fernández López A., García E., Gómez Lozano M., “The Jordan algebra of a Lie algebra”, J. Algebra, 308 (2007), 164–177 | DOI | MR | Zbl

[21] Fernández López A., García E., Gómez Lozano M., “Inner ideal structure of nearly Artinian Lie algebras”, Proc. Amer. Math. Soc., 137:1 (2009), 1–9 | MR | Zbl

[22] Fernández López A., Golubkov A. Yu., “Lie algebras with an algebraic adjoint representation revisited”, Manuscripta Math., 140:3–4 (2013), 363–376 | MR | Zbl

[23] García E., Gómez Lozano M., “A note on a result of Kostrikin”, J. Algebra, 37 (2009), 2405–2409 | MR | Zbl

[24] García E., Gómez Lozano M., “A characterization of the Kostrikin radical of a Lie algebra”, J. Algebra., 346 (2011), 266–283 | DOI | MR | Zbl

[25] Seligman G. B., Modular Lie algebras, Ergebn. Math. ihrer Grenzgeb., 40, Springer, New York, 1967 | MR | Zbl

[26] Thedy A., “Radicals of right-alternative and Jordan rings”, Commun. Algebra, 12:7 (1984), 857–887 | DOI | MR | Zbl

[27] Thedy A., “$Z$-closed ideals of quadratic Jordan algebras”, Commun. Algebra, 13:12 (1985), 2537–2565 | DOI | MR | Zbl