Bezout rings, annihilators, and diagonalizability
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 253-256
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be a right invariant ring. If $A$ is a diagonalizable ring or an exchange Bezout ring, then $B + r(M) = r(M/MB)$ for every finitely generated right $A$-module $M$ and any ideal $B$ of the ring $A$.
@article{FPM_2016_21_2_a11,
author = {A. A. Tuganbaev},
title = {Bezout rings, annihilators, and diagonalizability},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {253--256},
year = {2016},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a11/}
}
A. A. Tuganbaev. Bezout rings, annihilators, and diagonalizability. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 253-256. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a11/
[1] Golod E. S., Tuganbaev A. A., “Annulyatory i konechno porozhdennye moduli”, Fundament. i prikl. matem., 21:1 (2016), 79–82 | MR
[2] Golod E. S., “A remark on commutative arithmetic rings”, J. Math. Sci., 213:2 (2016), 143–144 | DOI | MR | Zbl
[3] Kaplansky I., “Elementary divisors and modules”, Trans. Amer. Math. Soc., 19:2 (1949), 21–23 | MR
[4] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic, Dordrecht, 1998 | MR | Zbl
[5] Tuganbaev A. A., “Bezout rings without non-central idempotents”, Discrete Math. Appl., 26:6 (2016), 369–377 | DOI | MR | Zbl