Bezout rings, annihilators, and diagonalizability
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 253-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a right invariant ring. If $A$ is a diagonalizable ring or an exchange Bezout ring, then $B + r(M) = r(M/MB)$ for every finitely generated right $A$-module $M$ and any ideal $B$ of the ring $A$.
@article{FPM_2016_21_2_a11,
     author = {A. A. Tuganbaev},
     title = {Bezout rings, annihilators, and diagonalizability},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {253--256},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a11/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Bezout rings, annihilators, and diagonalizability
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 253
EP  - 256
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a11/
LA  - ru
ID  - FPM_2016_21_2_a11
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Bezout rings, annihilators, and diagonalizability
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 253-256
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a11/
%G ru
%F FPM_2016_21_2_a11
A. A. Tuganbaev. Bezout rings, annihilators, and diagonalizability. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 253-256. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a11/

[1] Golod E. S., Tuganbaev A. A., “Annulyatory i konechno porozhdennye moduli”, Fundament. i prikl. matem., 21:1 (2016), 79–82 | MR

[2] Golod E. S., “A remark on commutative arithmetic rings”, J. Math. Sci., 213:2 (2016), 143–144 | DOI | MR | Zbl

[3] Kaplansky I., “Elementary divisors and modules”, Trans. Amer. Math. Soc., 19:2 (1949), 21–23 | MR

[4] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic, Dordrecht, 1998 | MR | Zbl

[5] Tuganbaev A. A., “Bezout rings without non-central idempotents”, Discrete Math. Appl., 26:6 (2016), 369–377 | DOI | MR | Zbl