Primitive and almost primitive elements of Schreier varieties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 3-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variety of linear algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free. A system of elements of a free algebra is primitive if there is a complement of this system with respect to a free generating set of the free algebra. An element of a free algebra of a Schreier variety is said to be almost primitive if it is not primitive in the free algebra, but it is a primitive element of any subalgebra that contains it. This survey article is devoted to the study of primitive and almost primitive elements of Schreier varieties.
@article{FPM_2016_21_2_a0,
     author = {V. A. Artamonov and A. V. Klimakov and A. A. Mikhalev and A. V. Mikhalev},
     title = {Primitive and almost primitive elements of {Schreier} varieties},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--35},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a0/}
}
TY  - JOUR
AU  - V. A. Artamonov
AU  - A. V. Klimakov
AU  - A. A. Mikhalev
AU  - A. V. Mikhalev
TI  - Primitive and almost primitive elements of Schreier varieties
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 3
EP  - 35
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a0/
LA  - ru
ID  - FPM_2016_21_2_a0
ER  - 
%0 Journal Article
%A V. A. Artamonov
%A A. V. Klimakov
%A A. A. Mikhalev
%A A. V. Mikhalev
%T Primitive and almost primitive elements of Schreier varieties
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 3-35
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a0/
%G ru
%F FPM_2016_21_2_a0
V. A. Artamonov; A. V. Klimakov; A. A. Mikhalev; A. V. Mikhalev. Primitive and almost primitive elements of Schreier varieties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 3-35. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a0/

[1] Akivis M. A., “O lokalnykh algebrakh mnogomernykh tri-tkanei”, Sib. matem. zhurn., 17:1 (1976), 5–11 | MR | Zbl

[2] Artamonov V. A., “Nilpotentnost, proektivnost, svoboda”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1971, no. 5, 50–53 | Zbl

[3] Artamonov V. A., “Proektivnye metabelevy gruppy i algebry Li”, Izv. AN SSSR. Ser. mat., 42:2 (1978), 226–236 | MR | Zbl

[4] Artamonov V. A., “Nilpotentnost, proektivnost, razlozhimost”, Sib. mat. zhurn., 32:6 (1991), 3–11 | MR

[5] Artamonov V. A., “Proektivnye metabelevy $D$-gruppy i superalgebry Li”, Tr. seminara im. I. G. Petrovskogo, 15, 1991, 189–195

[6] Artamonov V. A., “Predstavlenie Magnusa v kongruents-modulyarnykh mnogoobraziyakh”, Sib. mat. zhurn., 38:5 (1997), 978–995 | MR | Zbl

[7] Artamonov V. A., “Tranzitivnost deistviya na modulyarnykh vektorakh”, Fundament. i prikl. matem., 5:3 (1999), 765–773 | MR | Zbl

[8] Artamonov V. A., Mikhalev A. A., Mikhalev A. V., “Avtomorfizmy svobodnykh algebr shraierovykh mnogoobrazii”, Sovr. probl. matem. i mekh., 4:3 (2009), 39–57

[9] Baranovich T. M., Burgin M. S., “Lineinye $\Omega$-algebry”, UMN, 30:4 (1975), 61–106 | MR | Zbl

[10] Bakhturin Yu. A., “Dva zamechaniya o mnogoobraziyakh algebr Li”, Matem. zametki, 1968, no. 4, 387–398 | Zbl

[11] Bakhturin Yu. A., “O tozhdestvakh v algebrakh Li. I”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1973, no. 1, 12–18 | MR

[12] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR

[13] Burgin M. S., “Teorema o svobode v nekotorykh mnogoobraziyakh lineinye $\Omega$-algebr i $\Omega$-kolets”, UMN, 24:1 (1969), 27–38 ; УМН, 25:1 (1970), 248 | MR | Zbl | MR | Zbl

[14] Burgin M. S., “Shraierovy mnogoobraziyakh lineinykh $\Omega$-algebr”, Matem. sb., 93(135):4 (1974), 554–572

[15] Burgin M. S., Artamonov V. A., “Nekotorye svoistva podalgebr v mnogoobraziyakh lineinykh $\Omega$-algebr”, Matem. sb., 87:1 (1972), 67–82 | MR | Zbl

[16] Gainov A. T., “Kommutativnye svobodnye i antikommutativnye svobodnye proizvedeniya algebr”, DAN SSSR, 133:6 (1960), 1275–1278 | Zbl

[17] Gainov A. T., “Kommutativnye svobodnye i antikommutativnye svobodnye proizvedeniya algebr”, Sib. matem. zhurn., 3:6 (1962), 805–833 | Zbl

[18] Gainov A. T., “O differentsirovaniyakh privedennykh svobodnykh algebr”, Algebra i logika, 1:6 (1963), 20–25 | MR

[19] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[20] Zhukov A. I., “Privedennye sistemy opredelyayuschikh sootnoshenii v neassotsiativnykh algebrakh”, Matem. sb., 27:2 (1950), 267–280 | Zbl

[21] Zaitsev M. V., “O shraierovykh mnogoobraziyakh algebr Li”, Matem. zametki, 28:1 (1980), 119–126 | MR | Zbl

[22] Zolotykh A. A., Mikhalev A. A., “Endomorfizm svobodnoi algebry Li, sokhranyayuschii svoistvo primitivnosti elementov, yavlyaetsya avtomorfizmom”, UMN, 48:6 (1993), 149–150 | MR | Zbl

[23] Zolotykh A. A., Mikhalev A. A., “Rang elementa svobodnoi $p$-superalgebry Li”, DAN SSSR, 334:6 (1994), 690–693 | MR | Zbl

[24] Zolotykh A. A., Mikhalev A. A., “Algoritmy dopolneniya primitivnykh sistem elementov svobodnykh algebr Li do svobodnykh porozhdayuschikh mnozhestv”, Intellekt. sist., 1:1–4 (1996), 173–183

[25] Zolotykh A. A., Mikhalev A. A., “Kompleks algoritmov dlya vychislenii v superalgebrakh Li”, Programmirovanie, 1997, no. 1, 12–23 | Zbl

[26] Zolotykh A. A., Mikhalev A. A., Umirbaev U. U., “Primer nesvobodnoi algebry Li kogomologicheskoi razmernosti 1”, UMN, 49:1 (1994), 203–204 | MR | Zbl

[27] Klimakov A. V., “Pochti primitivnye elementy svobodnykh neassotsiativnykh (anti)kommutativnykh algebr malykh rangov”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 5, 19–24 | MR | Zbl

[28] Klimakov A. V., “Pochti primitivnye elementy svobodnykh algebr Li malykh rangov”, Fundament. i prikl. matem., 18:1 (2013), 63–74

[29] Klimakov A. V., Mikhalev A. A., “Pochti primitivnye elementy svobodnykh neassotsiativnykh algebr malykh rangov”, Fundament. i prikl. matem., 17:1 (2012), 127–141 | MR | Zbl

[30] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[31] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR

[32] Korepanov A. I., “Svobodnye neassotsiativnye superkommutativnye algebry”, Fundament. i prikl. matem., 9:3 (2003), 103–109 | Zbl

[33] Kukin G. P., “Primitivnye elementy svobodnykh algebr Li”, Algebra i logika, 9:4 (1970), 458–472 | MR | Zbl

[34] Kurosh A. G., “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Matem. sb., 20:2 (1947), 239–262 | MR | Zbl

[35] Kurosh A. G., “Neassotsiativnye svobodnye summy algebr”, Matem. sb., 37:2 (1955), 251–264 | Zbl

[36] Kurosh A. G., “Svobodnye summy multioperatornykh algebr”, Sib. matem. zhurn., 1:1 (1960), 62–70 | Zbl

[37] Kurosh A. G., “Multioperatornye koltsa i algebry”, UMN, 24:1(145) (1969), 3–15 | MR | Zbl

[38] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[39] Makar-Limanov L. G., “Ob avtomorfizmakh svobodnoi algebry s dvumya obrazuyuschimi”, Funkts. analiz i ego pril., 4:3 (1970), 107–108 | MR | Zbl

[40] Mikhalev A. A., “Podalgebry svobodnykh tsvetnykh superalgebr Li”, Matem. zametki, 37:5 (1985), 653–661 | MR | Zbl

[41] Mikhalev A. A., “Svobodnye tsvetnye superalgebry Li”, DAN SSSR, 286:3 (1986), 551–554 | MR | Zbl

[42] Mikhalev A. A., “Podalgebry svobodnykh $p$-superalgebr Li”, Matem. zametki, 43:2 (1988), 178–191

[43] Mikhalev A. A., “Lemma o sliyanii i problema ravenstva dlya tsvetnykh superalgebr Li”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 5, 88–91 | Zbl

[44] Mikhalev A. A., “O pravykh idealakh svobodnoi assotsiativnoi algebry, porozhdennykh svobodnymi tsvetnymi $p$-superalgebrami Li”, UMN, 47:5 (1992), 187–188 | MR | Zbl

[45] Mikhalev A. A., “Tekhnika kompozitsii A. I. Shirshova v superalgebrakh Li (nekommutativnye bazisy Grebnera)”, Tr. seminara im. I. G. Petrovskogo, 18, 1995, 277–289

[46] Mikhalev A. A., Mikhalev A. V., Chepovskii A. A., “Primitivnye elementy svobodnykh kommutativnykh i antikommutativnykh neassotsiativnykh algebr”, Vestn. Novosib. gos. un-ta. Ser. Matematika, mekhanika, informatika, 10:4 (2010), 62–81

[47] Mikhalev A. A., Mikhalev A. V., Chepovskii A. A., Shampaner K., “Primitivnye elementy svobodnykh neassotsiativnykh algebr”, Fundament. i prikl. matem., 13:5 (2007), 171–192

[48] Noskov G. A., “O primitivnykh elementakh v svobodnoi gruppe”, Matem. zametki, 30:4 (1981), 497–500 | MR | Zbl

[49] Romanovskii N. S., “Teorema o svobode dlya grupp s odnim opredelyayuschim sootnosheniem v mnogoobraziyakh razreshimykh i nilpotentnykh grupp dannykh stupenei”, Matem. sb., 89:1 (1972), 93–99

[50] Romanovskii N. S., “Cvobodnye podgruppy v konechno opredelennykh gruppakh”, Algebra i logika, 16:1 (1977), 88–97 | MR

[51] Romankov V. A., “Kriterii primitivnosti sistemy elementov svobodnoi metabelevoi gruppy”, Ukr. matem. zhurn., 43:7–8 (1991), 996–1002 | MR

[52] Romankov V. A., “Primitivnye elementy svobodnoi gruppy ranga $3$”, Matem. sb., 182:7 (1991), 1074–1085 | MR | Zbl

[53] Romankov V. A., “Kratkii obzor primitivnykh sistem elementov otnositelno svobodnykh grupp”, Vestn. Omsk. un-ta, 2017, no. 1, 15–17

[54] Romankov V. A., Chirkov I. V., Shevelin M. A., “Matrichnaya nepredstavimost grupp avtomorfizmov nekotorykh svobodnykh algebr”, Sib. matem. zhurn., 45:5 (2004), 1184–1188 | MR | Zbl

[55] Seregin A. V., “Nekotorye svoistva algebr Li kogomologicheskoi razmernosti odin”, Fundament. i prikl. matem., 4:2 (1998), 779–783 | MR

[56] Talapov V. V., “O razreshimykh algebrakh Li s odnim opredelyayuschim sootnosheniem”, Sib. matem. zhurn., 22:4 (1981), 176–181 | MR | Zbl

[57] Talapov V. V., “O polinilpotentnykh algebrakh Li, zadannykh odnim opredelyayuschim sootnosheniem”, Sib. matem. zhurn., 23:5 (1982), 192–204 | MR

[58] Timoshenko E. I., “Sistemy elementov, sokhranyayuschie meru na mnogoobraziyakh grupp”, Matem. sb., 204:12 (2013), 119–126 | DOI | Zbl

[59] Timoshenko E. I., “Endomorfizmy svobodnykh razreshimykh grupp, sokhranyayuschie primitivnost sistem elementov”, Algebra i logika, 54:4 (2015), 503–519 | MR | Zbl

[60] Umirbaev U. U., “Ob approksimatsii svobodnykh algebr Li otnositelno vkhozhdeniya”, Monoidy, koltsa i algebry, Uchenye zapiski Tartuskogo un-ta, 878, 1990, 147–152 | Zbl

[61] Umirbaev U. U., “Chastnye proizvodnye i endomorfizmy nekotorykh otnositelno svobodnykh algebr Li”, Sib. matem. zhurn., 34:6 (1993), 179–188 | MR | Zbl

[62] Umirbaev U. U., “O shraierovykh mnogoobraziyakh algebr”, Algebra i logika, 33:3 (1994), 317–340 | MR | Zbl

[63] Umirbaev U. U., “Primitivnye elementy svobodnykh grupp”, UMN, 49:2 (1994), 175–176 | MR | Zbl

[64] Umirbaev U. U., “O range elementov svobodnykh grupp”, Fundament. i prikl. matem., 2:1 (1996), 313–315 | MR | Zbl

[65] Feldman G. L., “Kontsy algebr Li”, UMN, 38:1 (1983), 199–200 | MR | Zbl

[66] Kharlampovich O. G., “Uslovie Lindona dlya razreshimykh algebr Li”, Izv. vyssh. uchebn. zaved. Matematika, 1984, no. 9, 50–59 | Zbl

[67] Khashina Yu. A., “Shraierovy mnogoobraziya $n$-lievykh algebr”, Sib. matem. zhurn., 32:2 (1991), 197–199 | MR | Zbl

[68] Khashina Yu. A., “Shraierovy mnogoobraziya obobschennykh kolets”, Nauchn. tr. IvGU. Matematika, 1999, no. 2, 133–141

[69] Chirkov I. V., Shevelin M. A., “Endomorfizmy svobodnykh metabelevykh algebr Li, sokhranyayuschie orbity”, Sib. matem. zhurn., 45:6 (2004), 1391–1396 | MR | Zbl

[70] Shampaner K., “Algoritmy realizatsii ranga i primitivnosti sistem elementov svobodnykh neassotsiativnykh algebr”, Fundament. i prikl. matem., 6:4 (2000), 1229–1238 | MR | Zbl

[71] Shirshov A. I., “Podalgebry svobodnykh lievykh algebr”, Matem. sb., 33:2 (1953), 441–452 | Zbl

[72] Shirshov A. I., “Podalgebry svobodnykh kommutativnykh i svobodnykh antikommutativnykh algebr”, Matem. sb., 1954, no. 1, 81–88 | Zbl

[73] Shirshov A. I., “Nekotorye algoritmicheskie voprosy dlya $\varepsilon$-algebr”, Sib. matem. zhurn., 3:1 (1962), 132–137 | Zbl

[74] Shirshov A. I., “Nekotorye algoritmicheskie problemy dlya algebr Li”, Sib. matem. zhurn., 3:2 (1962), 292–296 | Zbl

[75] Shirshov A. I., Izbrannye trudy. Koltsa i algebry, Nauka, M., 1984 | MR

[76] Shtern A. S., “Svobodnye superalgebry Li”, Sib. matem. zhurn., 27:1 (1986), 170–174 | MR | Zbl

[77] Yagzhev A. V., “Ob endomorfizmakh svobodnykh algebr”, Sib. matem. zhurn., 21:1 (1980), 181–192 | MR | Zbl

[78] Artamonov V. A., “Varieties of algebras”, Handbook of Algebra, v. 2, ed. M. Hazenwinkel, Elsevier, Amsterdam, 2000, 547–575 | MR

[79] Artamonov V. A., Mikhalev A. A., Mikhalev A. V., “Combinatorial properties of free algebras of Schreier varieties”, Polynomial Identities and Combinatorial Methods, eds. A. Giambruno, A. Regev, M. Zaicev, Marcel Dekker, New York, 2003, 47–99 | MR | Zbl

[80] Aust C., “Primitive elements and one relation algebras”, Trans. Amer. Math. Soc., 193 (1974), 375–387 | DOI | MR | Zbl

[81] Bahturin Yu. A., Mikhalev A. A., Petrogradsky V. M., Zaicev M. V., Infinite-Dimensional Lie Superalgebras, Walter de Gruyter, Berlin, 1992 | MR

[82] Bahturin Yu. A., Mikhalev A. A., Zaicev M. V., “Infinite-dimensional Lie superalgebras”, Handbook of Algebra, v. 2, Elsevier, Amsterdam, 2000, 579–614 | DOI | MR

[83] Bardakov V., Shpilrain V., Tolstykh V., “On the palindromic and primitive words of a free group”, J. Algebra, 285 (2005), 574–585 | DOI | MR | Zbl

[84] Beidar K. I., Martindale W. S., III, Mikhalev A. V., Rings with Generalized Identities, Marcel Dekker, New York, 1996 | MR | Zbl

[85] Bergman G., “Supports of derivations, free factorizations, and ranks of fixed subgroups in free groups”, Trans. Amer. Math. Soc., 351 (1999), 1531–1550 | DOI | MR | Zbl

[86] Birman J. S., “An inverse function theorem for free groups”, Proc. Amer. Math. Soc., 41 (1973), 634–638 | DOI | MR | Zbl

[87] Bokut' L. A., Kukin G. P., Algorithmic and Combinatorial Algebra, Kluwer Academic, Dordrecht, 1994 | MR | Zbl

[88] Bormotov D. Y., “Experimenting with primitive elements in $F_2$”, Computational and Experimental Group Theory, AMS–ASL Joint Special Session, Interactions Between Logic, Group Theory, and Computer Science (January 15–16, 2003, Baltimore, Maryland), Contemp. Math., 349, eds. A. Borovik, A. G. Myasnikov, Amer. Math. Soc., Providence, 2004, 215–224 | DOI | MR | Zbl

[89] Borovik A. V., Myasnikov A. G., Shpilrain V., “Measuring sets in infinite groups”, Computational and Statistical Group Theory, AMS Special Session Geometric Group Theory (April 21–22, 2001, Las Vegas, Nevada, April 28–29, 2001, Hoboken, New Jersey), Contemp. Math., 298, eds. R. H. Gilman, A. G. Myasnikov, V. Shpilrain, Amer. Math. Soc., Providence, 2002, 21–42 | DOI | MR | Zbl

[90] Borowiec A., Kharchenko V., Oziewicz Z., “On free differentials on associative algebras”, Non-Associative Algebra and Applications, Kluwer, 1994, 43–56 | MR

[91] Borowiec A., Kharchenko V., Oziewicz Z., “First-order calculi with values in right-universal bimodules”, Proc. Minisemester on Quantum Groups and Spaces (Warszawa, 1997), Banach Center Publ., 40, 171–184 | DOI | MR | Zbl

[92] Brunner A. M., “A group with an infinite number of Nielsen inequivalent one-relator presentations”, J. Algebra, 42 (1976), 81–84 | DOI | MR | Zbl

[93] Brunner A. M., Burns R. G., Oates-Williams S., “On almost primitive elements of free groups with an application to Fuchsian groups”, Can. J. Math., 45 (1993), 225–254 | DOI | MR | Zbl

[94] Burillo J., Ventura E., “Counting primitive elements in free groups”, Geom. Dedicata, 93 (2002), 143–162 | DOI | MR | Zbl

[95] Cherix P.-A., Schaeffer G., “An asymptotic Freiheitssatz for finitely generated groups”, Enseign. Math. (2), 44:1–2 (1998), 9–22 | MR | Zbl

[96] Chibrikov E., “On free Sabinin algebras”, Commun. Algebra, 39 (2011), 4014–4035 | DOI | MR | Zbl

[97] Clifford A., Goldstein R. Z., “Subgroups of free groups and primitive elements”, J. Group Theory, 13:4 (2010), 601–611 | DOI | MR | Zbl

[98] Clifford A., Goldstein R. Z., “Sets of primitive elements in a free group”, J. Algebra, 357 (2012), 271–278 | DOI | MR | Zbl

[99] Cohen M., Metzler W., Zimmermann A., What does a basis of $F(a,b)$ look like?, Math. Ann., 257 (1981), 435–445 | DOI | MR | Zbl

[100] Cohn P. M., “Rings with a weak algorithm”, Trans. Amer. Math. Soc., 109 (1963), 332–356 | DOI | MR | Zbl

[101] Cohn P. M., “Free ideal rings”, J. Algebra, 1 (1964), 47–69 | DOI | MR | Zbl

[102] Cohn P. M., “Subalgebras of free associative algebras”, Proc. London Math. Soc. (3), 14 (1964), 618–632 | DOI | MR | Zbl

[103] Cohn P. M., Skew Fields. Theory of General Division Rings, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[104] Comerford L. P., “Generic elements of free groups”, Arch. Math. (Basel), 65:3 (1995), 185–195 | DOI | MR | Zbl

[105] Czerniakiewicz A. J., “Automorphisms of a free associative algebra of rank $2$. I, II”, Trans. Amer. Math. Soc., 160 (1971), 393–401 ; 171 (1972), 309–315 | MR | Zbl | MR | Zbl

[106] Dicks W., Dunwoody M. J., Groups Acting on Graphs, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[107] Evans M. J., “Primitive elements in free groups”, Proc. Amer. Math. Soc., 106:2 (1989), 313–316 | DOI | MR | Zbl

[108] Fine B., Rosenberger G., “The Freiheitssatz and its extensions”, The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry, and Special Functions, Conference on the Legacy of Wilhelm Magnus (May 1–3, 1992, Polytechnic Univ., Brooklyn, New York), Contemp. Math., 169, eds. W. Abikoff, J. S. Birman, K. Kuiken, Amer. Math. Soc., Providence, 1994, 213–252 | DOI | MR | Zbl

[109] Fine B., Rosenberger G., Spellman D., Stille M., “Test, generic and almost primitive elements in free groups”, Mat. Contemp., 14 (1998), 45–59 | MR | Zbl

[110] Fine B., Rosenberger G., Spellman D., Stille M., “Test words, generic elements and almost primitivity”, Pacific J. Math., 190 (1999), 277–297 | DOI | MR | Zbl

[111] Fox R. H., “Free differential calculus. I. Derivations in free group rings”, Ann. Math. (2), 57 (1953), 547–560 | DOI | MR

[112] Gersten S. M., “On Whitehead's algorithm”, Bull. Amer. Math. Soc., 10:2 (1984), 281–284 | DOI | MR | Zbl

[113] Grätzer G., Universal Algebra, Springer, New York, 1979 | MR | Zbl

[114] Gupta C. K., Timoshenko E. I., “Automorphic and endomorphic reducibility and primitive endomorphisms of free metabelian groups”, Commun. Algebra, 25:10 (1997), 3057–3070 | DOI | MR | Zbl

[115] Hedges M. C., “The Freiheitssatz for graded algebras”, J. London Math. Soc. (2), 35 (1987), 395–405 | DOI | MR | Zbl

[116] Helling H., “The primitive elements of the free group of rank two”, J. Algebra, 297 (2006), 125–138 | DOI | MR | Zbl

[117] Higgins P. J., Lyndon R. C., “Equivalence of elements under automorphisms of a free group”, J. London Math. Soc. (2), 8 (1974), 254–258 | DOI | MR | Zbl

[118] Hoare A. H. M., “On automorphisms of the free group. I”, J. London Math. Soc. (2), 38:2 (1988), 277–285 | DOI | MR | Zbl

[119] Hofmann K. H., Strambach K., “Topological and analytic loops”, Quasigroups and Loops Theory and Applications, Sigma Ser. Pure Math., 8, eds. O. Chein, H. O. Pflugfelder, J. D. H. Smith, Heldermann, Berlin, 1990, 205–262 | MR

[120] Ivanov S. V., “On endomorphisms of free groups that preserve primitivity”, Arch. Math. (Basel), 72 (1999), 92–100 | DOI | MR | Zbl

[121] Jacobson N., Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, 1968 | MR | Zbl

[122] Kapovich I., Schupp P., Shpilrain V., “Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups”, Pacific J. Math., 223:1 (2006), 113–140 | DOI | MR | Zbl

[123] Kharchenko V. K., “Braided version of Shirshov–Witt theorem”, J. Algebra, 294:1 (2005), 196–225 | DOI | MR | Zbl

[124] Kharchenko V., Quantum Lie Theory. A Multilinear Approach, Lect. Notes Math., 2150, Springer, 2015 | DOI | MR | Zbl

[125] Kharlampovich O. G., Sapir M. V., “Algorithmic problems in varieties”, Internat. J. Algebra Comput., 5 (1995), 379–602 | DOI | MR | Zbl

[126] Klimakov A. V., “Primitivity rank of elements of free Schreier algebras”, J. Algebra Its Appl., 15:2 (2016), 1650036 | DOI | MR | Zbl

[127] Kolesnikov P. S., Makar-Limanov L. G., Shestakov I. P., “The Freiheitssatz for generic Poisson algebras”, SIGMA, 10 (2014), 115 | MR | Zbl

[128] Konieczny J., Rosenberger G., Wolny G., “Tame almost primitive elements”, Result. Math., 38 (2000), 116–129 | DOI | MR | Zbl

[129] Kozybaev D., Makar-Limanov L., Umirbaev U., “The Freiheitssatz and the automorphisms of free right-symmetric algebras”, Asian-Eur. J. Math., 1:2 (2008), 243–254 | DOI | MR | Zbl

[130] Lee D., “Endomorphisms of free groups that preserve automorphic orbits”, J. Algebra, 248 (2002), 230–236 | DOI | MR | Zbl

[131] Lee D., “Primitivity preserving endomorphisms of free groups”, Commun. Algebra, 30 (2002), 1921–1947 | DOI | MR | Zbl

[132] Lewin J., “On Schreier varieties of linear algebras”, Trans. Amer. Math. Soc., 132 (1968), 553–562 | DOI | MR | Zbl

[133] Lewin J., “Free modules over free algebras and free group algebras: The Schreier technique”, Trans. Amer. Math. Soc., 145 (1969), 455–465 | DOI | MR | Zbl

[134] Magnus W., “Über diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz)”, J. Reine Angew. Math., 163 (1930), 141–165 | MR | Zbl

[135] Makar-Limanov L. G., “Algebraically closed skew fields”, J. Algebra, 93 (1985), 117–135 | DOI | MR | Zbl

[136] Makar-Limanov L., Umirbaev U., “The Freiheitssatz for Novikov algebras”, TWMS J. Pure Appl. Math., 2:2 (2011), 228–235 | MR | Zbl

[137] Makar-Limanov L., Umirbaev U., “The Freiheitssatz for Poisson algebras”, J. Algebra, 328 (2011), 495–503 | DOI | MR | Zbl

[138] McCool J., “A presentation for the automorphism group of a free group of finite rank”, J. London Math. Soc. (2), 8 (1974), 259–266 | DOI | MR | Zbl

[139] McCool J., Pietrowski A., “On free products with amalgamation of two infinite cyclic groups”, J. Algebra, 18 (1971), 377–383 | DOI | MR | Zbl

[140] Miasnikov A. G., Myasnikov A. D., “Whitehead method and genetic algorithms”, Computational and Experimental Group Theory, AMS-ASL Joint Special Session, Interactions Between Logic, Group Theory, and Computer Science (January 15–16, 2003, Baltimore, Maryland), Contemp. Math., 349, eds. A. Borovik, A. G. Myasnikov, Amer. Math. Soc., Providence, 2004, 89–114 | DOI | MR | Zbl

[141] Mikhalev A. A., “The composition lemma for color Lie superalgebras and for Lie $p$-superalgebras”, Proc. of the Int. Conf. on Algebra, Dedicated to the Memory of A. I. Malcev, Contemp. Math., 131, no. 2, eds. L. A. Bokut', A. I. Mal'cev, Amer. Math. Soc., Providence, 1992, 91–104 | DOI | MR

[142] Mikhalev A. A., “Combinatorial aspects of the theory of Lie superalgebras”, First Int. Tainan–Moscow Algebra Workshop, Walter de Gruyter, Berlin, 1996, 37–68 | MR

[143] Mikhalev A. A., “Primitive elements and automorphisms of free algebras of Schreier varieties”, J. Math. Sci., 102:6 (2000), 4627–4639 | DOI | MR | Zbl

[144] Mikhalev A. A., Shestakov I. P., “PBW-pairs of varieties of linear algebras”, Commun. Algebra, 42:2 (2014), 667–687 | DOI | MR | Zbl

[145] Mikhalev A. A., Shpilrain V., Umirbaev U. U., “On isomorphism of Lie algebras with one defining relation”, Internat. J. Algebra Comput., 14:3 (2004), 389–393 | DOI | MR | Zbl

[146] Mikhalev A. A., Shpilrain V., Yu J.-T., “On endomorphisms of free algebras”, Algebra Colloq., 6 (1999), 241–248 | MR | Zbl

[147] Mikhalev A. A., Shpilrain V., Yu J.-T., “Combinatorial problems about free groups and algebras”, Lie Algebras, Rings and Related Topics, Springer, Hong Kong, 2000, 80–107 | Zbl

[148] Mikhalev A. A., Shpilrain V., Yu J.-T., Combinatorial Methods: Free Groups, Polynomials, and Free Algebras, Springer, New York, 2004 | MR | Zbl

[149] Mikhalev A. A., Umirbaev U. U., Yu J.-T., “Automorphic orbits in free non-associative algebras”, J. Algebra, 243 (2001), 198–223 | DOI | MR | Zbl

[150] Mikhalev A. A., Umirbaev U. U., Yu J.-T., “Generic, almost primitive and test elements of free Lie algebras”, Proc. Amer. Math. Soc., 130:5 (2002), 1303–1310 | DOI | MR | Zbl

[151] Mikhalev A. A., Umirbaev U. U., Zolotykh A. A., “A Lie algebra with cohomological dimension one over a field of prime characteristic is not necessarily free”, First Int. Tainan–Moscow Algebra Workshop, Walter de Gruyter, Berlin, 1996, 257–264 | MR

[152] Mikhalev A. A., Yu J.-T., “Test elements, retracts and automorphic orbits of free algebras”, Internat. J. Algebra Comput., 8 (1998), 295–310 | DOI | MR | Zbl

[153] Mikhalev A. A., Yu J.-T., “Automorphic orbits of elements of free algebras with the Nielsen–Schreier property”, Combinatorial and Computational Algebra, Int. Conf. on Combinatorial and Computational Algebra (May 24–29, 1999, The Univ. of Hong Kong, Hong Kong SAR, China), Contemp. Math., 264, ed. K.-Y. Chan, Amer. Math. Soc., Providence, 2000, 95–110 | DOI | MR | Zbl

[154] Mikhalev A. A., Yu J.-T., “Primitive, almost primitive, test, and $\Delta$-primitive elements of free algebras with the Nielsen–Schreier property”, J. Algebra, 228 (2000), 603–623 | DOI | MR | Zbl

[155] Mikhalev A. A., Zolotykh A. A., “Applications of Fox differential calculus to free Lie superalgebras”, Non-Associative Algebra and Its Applications, Kluwer Academic, Dordrecht, 1994, 285–290 | DOI | MR | Zbl

[156] Mikhalev A. A., Zolotykh A. A., “Rank and primitivity of elements of free color Lie ($p$-)super-algebras”, Internat. J. Algebra Comput., 4 (1994), 617–656 | DOI | MR

[157] Mikhalev A. A., Zolotykh A. A., “An inverse function theorem for free Lie algebras over commutative rings”, Algebra Colloq., 2:3 (1995), 213–220 | MR | Zbl

[158] Mikhalev A. A., Zolotykh A. A., Combinatorial Aspects of Lie Superalgebras, CRC Press, Boca Raton, 1995 | MR | Zbl

[159] Mikhalev A. A., Zolotykh A. A., “Algorithms for primitive elements of free Lie algebras and superalgebras”, Proc. ISSAC-96, ACM Press, New York, 1996, 161–169 | DOI | MR | Zbl

[160] Mikhalev A. A., Zolotykh A. A., “Automorphisms and primitive elements of free Lie superalgebras”, Commun. Algebra, 22 (2004), 5889–5901 | DOI | MR

[161] Myasnikov A. G., Shpilrain V., “Automorphic orbits in free groups”, J. Algebra, 269:1 (2003), 18–27 | DOI | MR | Zbl

[162] Nielsen J., “Die Isomorphismengruppe der freien Gruppe”, Math. Ann., 91 (1924), 169–209 | DOI | MR | Zbl

[163] Öğüşlü N. Ş., Ekici N., “$k$-primitivity and and images of primitive elements”, J. Algebra Its Appl., 15:7 (2016), 1650126 | DOI | MR | Zbl

[164] Osborne R. P., Zieschang H., “Primitives in the free group on two generators”, Invent. Math., 63 (1981), 17–24 | DOI | MR | Zbl

[165] Parzanchevski O., Puder D., “Stallings graphs, algebraic extensions and primitive elements in $F_2$”, Math. Proc. Cambridge Philos. Soc., 157:1 (2014), 1–11 | DOI | MR | Zbl

[166] Pérez-Izquierdo J. M., “Algebras, hyperalgebras, nonassociative bialgebras and loops”, Adv. Math., 208:2 (2007), 834–876 | DOI | MR | Zbl

[167] Piggott A., “Palindromic primitives and palindromic bases in the free group of rank two”, J. Algebra, 304 (2006), 359–366 | DOI | MR | Zbl

[168] Puder D., “Primitive words, free factors and measure preservation”, Israel J. Math., 201:1 (2014), 25–73 | DOI | MR | Zbl

[169] Puder D., Parzanchevski O., “Measure preserving words are primitive”, J. Amer. Math. Soc., 28 (2015), 63–97 | DOI | MR | Zbl

[170] Puder D., Wu C., “Growth of primitive elements in free groups”, J. London Math. Soc. (2), 90 (2014), 89–104 | DOI | MR | Zbl

[171] Rapaport E. S., “On free groups and their automorphisms”, Acta Math., 99 (1958), 139–163 | DOI | MR | Zbl

[172] Reutenauer C., “Applications of a noncommutative Jacobian matrix”, J. Pure Appl. Algebra, 77 (1992), 169–181 | DOI | MR | Zbl

[173] Reutenauer C., Free Lie Algebras, Clarendon Press, Oxford, 1993 | MR | Zbl

[174] Rivin I., “A remark on “Counting primitive elements in free groups””, Geom. Dedicata, 93 (2002), 143–162 ; J. Burillo, E. Ventura, Geom. Dedicata, 107 (2004), 99–100 | DOI | MR | DOI | MR

[175] Rosenberger G., “Alternierende Produkte in freien Gruppen”, Pacific J. Math., 78 (1978), 243–250 | DOI | MR | Zbl

[176] Rosenberger G., “Über Darstellungen von Elementen und Untergruppen in freien Produkten”, Groups—Korea 1983, Proc. of a Conference on Combinatorial Group Theory (Kyoungju, Korea, August 26–31, 1983), Lect. Notes Math., 1098, eds. A. C. Kim, B. H. Neumann, Springer, Berlin, 1984, 142–160 | DOI | MR

[177] Rosenberger G., “A property of subgroups of free groups”, Bull. Austral. Math. Soc., 43 (1991), 269–272 | DOI | MR | Zbl

[178] Schofield A. H., Representations of Rings over Skew Fields, Cambridge Univ. Press, Cambridge, 1985 | MR

[179] Schreier O., “Die Untergruppen der freien Gruppen”, Abh. Math. Sem. Univ. Hamburg., 5 (1927), 161–183 | DOI | MR | Zbl

[180] Shestakov I. P., Umirbaev U. U., “Free Akivis algebras, primitive elements, and hyperalgebras”, J. Algebra, 250 (2002), 533–548 | DOI | MR | Zbl

[181] Shpilrain V., “On generators of $L/R^{2}$ Lie algebras”, Proc. Amer. Math. Soc., 119 (1993), 1039–1043 | MR | Zbl

[182] Shpilrain V., “Recognizing automorphisms of the free groups”, Arch. Math., 62 (1994), 385–392 | DOI | MR | Zbl

[183] Shpilrain V., “On the rank of an element of a free Lie algebra”, Proc. Amer. Math. Soc., 123 (1995), 1303–1307 | DOI | MR | Zbl

[184] Shpilrain V., “Generalized primitive elements of a free group”, Arch. Math. (Basel), 71 (1998), 270–278 | DOI | MR | Zbl

[185] Shpilrain V., “Counting primitive elements of a free group”, Geometric Methods in Group Theory, AMS Special Session Geometric Group Theory (October 5–6, 2002, Northeastern Univ., Boston, Massachusetts); Special Session at the First Joint Meeting of the American Mathematical Society and the Real Sociedad Matemática Española (June 18–21, 2003, Seville, Spain), Contemp. Math., 372, ed. J. Burillo, Amer. Math. Soc., Providence, 2005, 91–98 | DOI

[186] Shpilrain V., Yu J.-T., “Factor algebras of free algebras: On a problem of G. Bergman”, Bull. London Math. Soc., 35 (2003), 706–710 | DOI | MR | Zbl

[187] Silva P. V., Weil P., “Automorphic orbits in free groups: words versus subgroups”, Internat. J. Algebra Comput., 20:4 (2010), 561–590 | DOI | MR | Zbl

[188] Stallings J., “On torsion-free groups with infinitely many ends”, Ann. Math., 88 (1968), 312–334 | DOI | MR | Zbl

[189] Swan R. G., “Groups of cohomological dimension one”, J. Algebra, 12 (1969), 585–610 | DOI | MR | Zbl

[190] Tvalavadze M., “Universal enveloping algebras of nonassociative structures”, Serdica Math. J., 38 (2012), 433–462 | MR | Zbl

[191] Umirbaev U. U., “Universal derivations and subalgebras of free algebras”, Algebra (Krasnoyarsk, 1993), Walter de Gruyter, Berlin, 1996, 255–271 | MR | Zbl

[192] Umirbaev U. U., “Defining relations for automorphism groups of free algebras”, J. Algebra, 314 (2007), 209–225 | DOI | MR | Zbl

[193] Umirbaev U. U., “The Anick automorphism of free associative algebras”, J. Reine Angew. Math., 605 (2007), 165–178 | MR | Zbl

[194] Whitehead J. H. C., “On equivalent sets of elements in a free group”, Ann. Math., 37 (1936), 782–800 | DOI | MR

[195] Whitehead J. H. C., “On certain sets of elements in a free group”, Proc. London Math. Soc., 41 (1936), 48–56 | DOI | MR

[196] Witt E., “Die Unterringe der freien Lieschen Ringe”, Math. Z., 64 (1956), 195–216 | DOI | MR | Zbl