On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 217-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $R$-module $A$ is said to be a $\mathrm{UA}$-module if it is not possible to change the addition of $A$ without changing the action of $R$ on $A$. A semigroup $(R,\cdot)$ is said to be a $\mathrm{UA}$-ring if there exists a unique binary operation $+$ making $(R,\cdot,+)$ into a ring. In this paper, the $\mathrm{UA}$-properties of $sp$-groups and their endomorphism rings are studied.
@article{FPM_2016_21_1_a17,
     author = {D. S. Chistyakov},
     title = {On the $\mathrm{UA}$-properties of {Abelian} $sp$-groups and their endomorphism rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {217--224},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a17/}
}
TY  - JOUR
AU  - D. S. Chistyakov
TI  - On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 217
EP  - 224
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a17/
LA  - ru
ID  - FPM_2016_21_1_a17
ER  - 
%0 Journal Article
%A D. S. Chistyakov
%T On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 217-224
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a17/
%G ru
%F FPM_2016_21_1_a17
D. S. Chistyakov. On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 217-224. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a17/

[1] Krylov P. A., “Smeshannye abelevy gruppy kak moduli nad svoimi koltsami endomorfizmov”, Fundament. i prikl. matem., 6:3 (2000), 793–812 | MR | Zbl

[2] Lyubimtsev O. V., “Separabelnye abelevy gruppy bez krucheniya s UA-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[3] Lyubimtsev O. V., “Periodicheskie abelevy gruppy s UA-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | DOI | MR | Zbl

[4] Lyubimtsev O. V., Chistyakov D. S., “Abelevy gruppy kak UA-moduli nad koltsom $\mathbb{Z}$”, Matem. zametki, 87:3 (2010), 412–416 | DOI | MR | Zbl

[5] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:177 (1988), 210–224 | Zbl

[6] Chistyakov D. S., “Abelevy gruppy kak UA-moduli nad svoim koltsom endomorfizmov”, Matem. zametki, 91:6 (2012), 934–941 | DOI | Zbl

[7] Chistyakov D. S., “Odnorodnye otobrazheniya abelevykh grupp”, Izv. vyssh. uchebn. zaved. Matematika, 2014, no. 2, 61–68 | Zbl

[8] Albrecht U., Breaz S., Wickless W., “Generalized endoprimal Abelian groups”, J. Algebra Its Appl., 5:1 (2006), 1–17 | DOI | MR | Zbl

[9] Hausen J., Johnson J. A., “Centralizer near-rings that are rings”, J. Austral. Math. Soc., 59:2 (1995), 173–183 | DOI | MR | Zbl

[10] Van der Merwe A. B., “Unique addition modules”, Commun. Algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl