Group ring ideals related to Reed--Muller codes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 211-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

Reed–Muller codes are one of the most well-studied families of codes; however, there are still open problems regarding their structure. Recently a new ring-theoretic approach has emerged that provides a rather intuitive construction of these codes. This approach is centered around the notion of basic Reed–Muller codes. It is known that basic Reed–Muller codes $\mathcal{M}_{\pi}(m,k)$ over a prime field are powers of the radical $\mathfrak{R}_S$ of a corresponding group algebra and over a nonprime field there are no such equalities, except for trivial ones. In this paper, we consider the ideals $\mathfrak{R}_S \mathcal{M}_{\pi}(m,k)$ that arise while studying the inclusions of the basic codes and radical powers.
@article{FPM_2016_21_1_a16,
     author = {I. N. Tumaykin},
     title = {Group ring ideals related to {Reed--Muller} codes},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {211--215},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a16/}
}
TY  - JOUR
AU  - I. N. Tumaykin
TI  - Group ring ideals related to Reed--Muller codes
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 211
EP  - 215
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a16/
LA  - ru
ID  - FPM_2016_21_1_a16
ER  - 
%0 Journal Article
%A I. N. Tumaykin
%T Group ring ideals related to Reed--Muller codes
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 211-215
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a16/
%G ru
%F FPM_2016_21_1_a16
I. N. Tumaykin. Group ring ideals related to Reed--Muller codes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 211-215. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a16/

[1] Tumaikin I. N., “Bazisnye kody Rida–Mallera kak gruppovye kody”, Fundament. i prikl. matem., 18:4 (2013), 137–154

[2] Couselo E., González S., Markov V., Martínez C., Nechaev A., “Ideal representation of Reed–Solomon and Reed–Muller codes”, Algebra Logic, 51:3 (2012), 195–212 | DOI | MR | Zbl