Once more on the lattice of subvarieties of the wreath product of the variety of semilattices and the variety of semigroups with zero multiplication
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 193-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the monoid wreath product of any two semigroup varieties that are atoms in the lattice of all semigroup varieties may have a finite as well as an infinite lattice of subvarieties. If this lattice is finite, then as a rule it has at most eleven elements. This was proved in a paper of the author in 2007. The exclusion is the monoid wreath product $\mathbf{Sl}\mathbin{\mathrm{w}} \mathbf{N}_2$ of the variety of semilattices and the variety of semigroups with zero multiplication. The number of elements of the lattice $L(\mathbf{Sl} \mathbin{\mathrm{w}} \mathbf{N}_2)$ of subvarieties of $\mathbf{Sl}\mathbin{\mathrm{w}} \mathbf{N}_2$ is still unknown. In a previous paper, we have shown that the lattice $L(\mathbf{Sl}\mathbin{\mathrm{w}} \mathbf{N}_2)$ contains a sublattice having 33 elements. In the present paper, it is proved that the lattice under consideration has exactly three maximal subvarieties. As a first application of the obtained results we calculate the finite basis of the lattice union of the variety of all semilattices and the largest variety among subvarieties of our lattice having at least one heterotypic identity. As a second application we show that the considered lattice of subvarieties has at least 39 elements.
@article{FPM_2016_21_1_a15,
     author = {A. V. Tishchenko},
     title = {Once more on the lattice of subvarieties of the wreath product of the variety of semilattices and the variety of semigroups with zero multiplication},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--210},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a15/}
}
TY  - JOUR
AU  - A. V. Tishchenko
TI  - Once more on the lattice of subvarieties of the wreath product of the variety of semilattices and the variety of semigroups with zero multiplication
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 193
EP  - 210
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a15/
LA  - ru
ID  - FPM_2016_21_1_a15
ER  - 
%0 Journal Article
%A A. V. Tishchenko
%T Once more on the lattice of subvarieties of the wreath product of the variety of semilattices and the variety of semigroups with zero multiplication
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 193-210
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a15/
%G ru
%F FPM_2016_21_1_a15
A. V. Tishchenko. Once more on the lattice of subvarieties of the wreath product of the variety of semilattices and the variety of semigroups with zero multiplication. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 193-210. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a15/

[1] M. Arbib (red.), Algebraicheskaya teoriya avtomatov, yazykov i polugrupp, Statistika, M., 1975 | MR

[2] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972 | MR

[3] Koshelev Yu. G., “Assotsiativnost umnozheniya mnogoobrazii polugrupp”, Tez. dokl. po teorii modelei i algebr. sistem, Mezhdunar. konf. po algebre, posv. pamyati A. I. Maltseva (Novosibirsk, 1989), 63

[4] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, ed. L. N. Shevrin, Mir, M., 1985 | MR

[5] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[6] Tischenko A. V., “O razlichnykh opredeleniyakh spleteniya polugruppovykh mnogoobrazii”, Fundam. i prikl. matem., 2:1 (1996), 233–249 | MR

[7] Tischenko A. V., “Cpleteniya mnogoobrazii i poluarkhimedovy mnogoobraziya polugrupp”, Tr. MMO, 51, no. 2, 1996, 107–132

[8] Tischenko A. V., “Spletenie atomov reshetki polugruppovykh mnogoobrazii”, UMN, 53:4 (1998), 219–220 | DOI | MR

[9] Tischenko A. V., “Uporyadochennyi monoid polugruppovykh mnogoobrazii otnositelno spleteniya”, Fundam. i prikl. matem., 5:1 (1999), 283–305 | MR

[10] Tischenko A. V., “Cpletenie atomov reshetki polugruppovykh mnogoobrazii”, Tr. MMO, 68, 2007, 107–132

[11] Tischenko A. V., “O reshetke podmnogoobrazii spleteniya mnogoobraziya polureshetok i mnogoobraziya polugrupp s nulevym umnozheniem”, Fundam. i prikl. matem., 19:6 (2014), 191–212

[12] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshetki mnogoobrazii polugrupp”, Izv. vyssh. uchebn. zaved. Matematika, 2009, no. 3, 3–36 | Zbl

[13] Shevrin L. N., Volkov M. V., “Tozhdestva polugrupp”, Izv. vyssh. uchebn. zaved. Matematika, 1985, no. 11, 3–47 | MR | Zbl

[14] Eilenberg S., Automata, Languages and Machines, v. B, Academic Press, New York, 1976 | MR | Zbl

[15] Evans T., “The lattice of semigroup varieties”, Semigroup Forum, 2 (1971), 1–43 | DOI | MR | Zbl

[16] Skornjakov L. A., “Regularity of the wreath product of monoids”, Semigroup Forum, 18:1 (1979), 83–86 | DOI | MR | Zbl

[17] Tilson B., “Categories as algebra: an essential ingredient in the theory of monoids”, J. Pure Appl. Algebra, 48:1–2 (1987), 83–198 | DOI | MR | Zbl