Serial group rings of finite simple groups of Lie type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 135-144
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $F$ is a field whose characteristic $p$ divides the order of a finite group $G$. It is shown that if $G$ is one of the groups ${}^3 D_4(q)$, $E_6(q)$, ${}^2E_6(q)$, $E_7(q)$, $E_8(q)$, $F_4(q)$, ${}^2F_4(q)$, or ${}^2G_2(q)$, then the group ring $FG$ is not serial. If $G= G_2(q^2)$, then the ring $FG$ is serial if and only if either $p>2$ divides $q^2-1$, or $p=7$ divides $q^2 + \sqrt{3}q + 1$ but $49$ does not divide this number.
@article{FPM_2016_21_1_a11,
author = {A. V. Kukharev and G. E. Puninski},
title = {Serial group rings of finite simple groups of {Lie} type},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {135--144},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/}
}
TY - JOUR AU - A. V. Kukharev AU - G. E. Puninski TI - Serial group rings of finite simple groups of Lie type JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 135 EP - 144 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/ LA - ru ID - FPM_2016_21_1_a11 ER -
A. V. Kukharev; G. E. Puninski. Serial group rings of finite simple groups of Lie type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/