Serial group rings of finite simple groups of Lie type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 135-144

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $F$ is a field whose characteristic $p$ divides the order of a finite group $G$. It is shown that if $G$ is one of the groups ${}^3 D_4(q)$, $E_6(q)$, ${}^2E_6(q)$, $E_7(q)$, $E_8(q)$, $F_4(q)$, ${}^2F_4(q)$, or ${}^2G_2(q)$, then the group ring $FG$ is not serial. If $G= G_2(q^2)$, then the ring $FG$ is serial if and only if either $p>2$ divides $q^2-1$, or $p=7$ divides $q^2 + \sqrt{3}q + 1$ but $49$ does not divide this number.
@article{FPM_2016_21_1_a11,
     author = {A. V. Kukharev and G. E. Puninski},
     title = {Serial group rings of finite simple groups of {Lie} type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/}
}
TY  - JOUR
AU  - A. V. Kukharev
AU  - G. E. Puninski
TI  - Serial group rings of finite simple groups of Lie type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 135
EP  - 144
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/
LA  - ru
ID  - FPM_2016_21_1_a11
ER  - 
%0 Journal Article
%A A. V. Kukharev
%A G. E. Puninski
%T Serial group rings of finite simple groups of Lie type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 135-144
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/
%G ru
%F FPM_2016_21_1_a11
A. V. Kukharev; G. E. Puninski. Serial group rings of finite simple groups of Lie type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/