Serial group rings of finite simple groups of Lie type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 135-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $F$ is a field whose characteristic $p$ divides the order of a finite group $G$. It is shown that if $G$ is one of the groups ${}^3 D_4(q)$, $E_6(q)$, ${}^2E_6(q)$, $E_7(q)$, $E_8(q)$, $F_4(q)$, ${}^2F_4(q)$, or ${}^2G_2(q)$, then the group ring $FG$ is not serial. If $G= G_2(q^2)$, then the ring $FG$ is serial if and only if either $p>2$ divides $q^2-1$, or $p=7$ divides $q^2 + \sqrt{3}q + 1$ but $49$ does not divide this number.
@article{FPM_2016_21_1_a11,
     author = {A. V. Kukharev and G. E. Puninski},
     title = {Serial group rings of finite simple groups of {Lie} type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/}
}
TY  - JOUR
AU  - A. V. Kukharev
AU  - G. E. Puninski
TI  - Serial group rings of finite simple groups of Lie type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 135
EP  - 144
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/
LA  - ru
ID  - FPM_2016_21_1_a11
ER  - 
%0 Journal Article
%A A. V. Kukharev
%A G. E. Puninski
%T Serial group rings of finite simple groups of Lie type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 135-144
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/
%G ru
%F FPM_2016_21_1_a11
A. V. Kukharev; G. E. Puninski. Serial group rings of finite simple groups of Lie type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a11/

[1] Volkov Yu. V., Kukharev A. V., Puninskii G. E., “Polutsepnost gruppovogo koltsa konechnoi gruppy zavisit tolko ot kharakteristiki polya”, Zap. nauch. sem. POMI, 423, 2014, 57–66

[2] Kukharev A. V., Puninskii G. E., “Polutsepnye gruppovye koltsa konechnykh grupp. $p$-nilpotentnost”, Zap. nauch. sem. POMI, 413, 2013, 134–152

[3] Kukharev A. V., Puninskii G. E., “Polutsepnost gruppovykh kolets znakoperemennykh i simmetricheskikh grupp”, Vestn. BGU. Ser. 1, 2014, no. 2, 61–64

[4] Kukharev A. V., Puninskii G. E., “Polutsepnye gruppovye koltsa konechnykh grupp. Sporadicheskie prostye gruppy i gruppy Sudzuki”, Zap. nauch. sem. POMI, 435, 2015, 73–94

[5] Tuganbaev A., Teoriya kolets. Arifmeticheskie koltsa i moduli, MTsNMO, M., 2009

[6] Feit U., Teoriya predstavlenii konechnykh grupp, Nauka, M., 1990 | MR

[7] J. H. Conway (ed.), Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[8] Deriziotis D. I., Fakiolas A. P., “The maximal tori in the finite Chevalley groups of type $E_6$, $E_7$ and $E_8$”, Commun. Algebra, 19:3 (1991), 889–903 | DOI | MR | Zbl

[9] Deriziotis D. I., Michler G. O., “Character tables and blocks of finite simple triality groups $^3 D_4(q)$”, Trans. Amer. Math. Soc., 303:1 (1987), 39–70 | MR | Zbl

[10] Eisenbud D., Griffith P., “Serial rings”, J. Algebra, 17:3 (1971), 389–400 | DOI | MR | Zbl

[11] Geck M., “Generalized Gelfand–Graev characters for Steinberg's triality groups and their applications”, Commun. Algebra, 19:12 (1991), 3249–3269 | DOI | MR | Zbl

[12] Geck M., “Brauer trees of Hecke algebras”, Commun. Algebra, 20:10 (1992), 2937–2973 | DOI | MR | Zbl

[13] Gorenstein D., Lyons R., Solomon R., The Classification of the Finite Simple Groups, Number 3, Math. Surveys Monographs, 40.3, Amer. Math. Soc., Providence, 1998 | MR

[14] Higman D. G., “Indecomposable representations at charasteristic $p$”, Duke J. Math., 21 (1954), 377–381 | DOI | MR | Zbl

[15] Hiss G., “The Brauer trees of the Ree groups”, Commun. Algebra, 19:3 (1991), 871–888 | DOI | MR | Zbl

[16] Hiss G., Lübeck F., “The Brauer trees of the exceptional Chevalley groups of types $F_4$ and ${}^2 E_6$”, Arch. Math., 70:1 (1998), 16–21 | DOI | MR | Zbl

[17] Hiss G., Lübeck F., Malle G., “The Brauer trees of the exceptional Chevalley groups of type $E_6$”, Manuscripta Math., 87:1 (1995), 131–144 | DOI | MR | Zbl

[18] Kukharev A., Puninski G., “Serial group rings of finite groups. $p$-solvability”, Algebra Discrete Math., 16:2 (2013), 201–216 | MR | Zbl

[19] Kukharev A., Puninski G., “Serial group rings of finite groups. General linear and close groups”, Algebra Discrete Math., 20:1 (2015), 115–125 | MR | Zbl

[20] Lux K., Pahlings H., Representations of Groups: A Computational Approach, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[21] Puninski G., Serial Rings, Kluwer Academic, Dordrecht, 2001 | MR | Zbl

[22] Sawabe M., Watanabe A., “On the principal blocks of finite groups with Abelian Sylow $p$-subgroups”, J. Algebra, 237:2 (2001), 719–734 | DOI | MR | Zbl

[23] Shamash J., “Blocks and Brauer trees in the group $G_2(q)$ for primes dividing $q \pm 1$”, Commun. Algebra, 17:8 (1989), 1901–1949 | DOI | MR | Zbl

[24] Shamash J., “Brauer trees for blocks of cyclic defect in the group $G_2(q)$ for primes dividing $q^2 \pm q+ 1$”, J. Algebra, 123:2 (1989), 378–396 | DOI | MR | Zbl

[25] Breuer T. et al., The Modular Atlas Homepage: Decomposition Matrices, http://www.math.rwth-aachen.de/homes/MOC/decomposition/