On linear groups with the property of order finiteness of all primitive words in generators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 23-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that a finitely generated linear group of finite exponent is finite. It is proved in this paper that there exist infinite finitely generated linear groups such that all primitive words from generators have finite order.
@article{FPM_2016_21_1_a1,
     author = {A. N. Admiralova and V. V. Beniash-Krivets},
     title = {On linear groups with the property of order finiteness of all primitive words in generators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--35},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a1/}
}
TY  - JOUR
AU  - A. N. Admiralova
AU  - V. V. Beniash-Krivets
TI  - On linear groups with the property of order finiteness of all primitive words in generators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 23
EP  - 35
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a1/
LA  - ru
ID  - FPM_2016_21_1_a1
ER  - 
%0 Journal Article
%A A. N. Admiralova
%A V. V. Beniash-Krivets
%T On linear groups with the property of order finiteness of all primitive words in generators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 23-35
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a1/
%G ru
%F FPM_2016_21_1_a1
A. N. Admiralova; V. V. Beniash-Krivets. On linear groups with the property of order finiteness of all primitive words in generators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 23-35. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a1/

[1] Samsonov Yu. B., Tavgen O. I., “Unipotentnost obraza predstavleniya $F_2 (x,y)$ matritsami iz $\mathrm{GL}_n (\mathbb{C})$ pri uslovii otobrazheniya obrazuyuschikh i primitivnykh elementov v unipotentnye matritsy, $n=2,3,4$”, Dokl. NAN Belarusi, 45:6 (2001), 29–32 | MR | Zbl

[2] Tavgen O. I., Yan S., “Unipotentnost obraza predstavleniya $F_2 (x,y)$ v $\mathrm{GL}(5,\mathbb{C})$ pri otobrazhenii primitivnykh elementov v unipotentnye matritsy”, Vestn. BGU. Ser. 1, 2009, no. 3, 74–79 | MR | Zbl

[3] Tavgen O. I., Yan S., “Unipotentnost obraza predstavleniya $F_2 (x,y)$ v $\mathrm{GL}(6,\mathbb{C})$ pri otobrazhenii primitivnykh elementov v unipotentnye matritsy”, Vestn. BGU. Ser. 1, 2010, no. 2, 114–119 | MR | Zbl

[4] Tavgen O. I., Yan S., “Unipotentnost obraza predstavleniya $F_2 (x,y)$ v $\mathrm{GL}(7,\mathbb{C})$ pri otobrazhenii primitivnykh elementov v unipotentnye matritsy”, Vestn. BGU. Ser. 1, 2011, no. 1, 57–62 | MR | Zbl

[5] Kholl M., Teoriya grupp, Izd-vo inostr. lit., M., 1962

[6] Dyer J., Formanek E., Grossman E., “On the linearity of automorphism groups of free groups”, Arch. Math., 38 (1982), 404–409 | DOI | MR | Zbl

[7] Platonov V. P., Potapchik A., “New combinatorial properties of linear groups”, J. Algebra, 235 (2001), 399–415 | DOI | MR | Zbl