Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch--Zaitsev rank
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 207-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study generalized soluble groups with restriction on normal closures of cyclic subgroups. A group $G$ is said to have finite Hirsch–Zaitsev rank if $G$ has an ascending series whose factors are either infinite cyclic or periodic and if the number of infinite cyclic factors are finite. It is not hard to see that the number of infinite cyclic factors in each of such series is an invariant of a group $G$. This invariant is called the Hirsch–Zaitsev rank of $G$ and will be denoted by $\mathbf r_{\mathrm{hz}}(G)$. We study the groups in which the normal closure of every cyclic subgroup has the Hirsch–Zaitsev rank at most $\mathbf b$ ($\mathbf b$ is some positive integer). For some natural restrictions we find a function $\mathbf k_1(\mathbf b)$ such that $\mathbf r_{\mathrm{hz}}([G/\mathrm{Tor}(G), G/\mathrm{Tor}(G)]) \leq \mathbf k_1(\mathbf b)$.
@article{FPM_2015_20_6_a9,
     author = {L. A. Kurdachenko and N. N. Semko},
     title = {Groups in which the normal closures of cyclic subgroups have bounded finite {Hirsch--Zaitsev} rank},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {207--228},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a9/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - N. N. Semko
TI  - Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch--Zaitsev rank
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 207
EP  - 228
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a9/
LA  - ru
ID  - FPM_2015_20_6_a9
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A N. N. Semko
%T Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch--Zaitsev rank
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 207-228
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a9/
%G ru
%F FPM_2015_20_6_a9
L. A. Kurdachenko; N. N. Semko. Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch--Zaitsev rank. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 207-228. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a9/

[1] Zaitsev D. I., “O razreshimykh gruppakh konechnogo ranga”, Gruppy s ogranicheniyami dlya podgrupp, Naukova dumka, Kiev, 1971, 115–130 | MR

[2] Zaitsev D. I., “Gruppy s dopolnyaemymi normalnymi podgruppami”, Nekotorye problemy teorii grupp, In-t matematiki AN USSR, Kiev, 1975, 30–74

[3] Zaitsev D. I., “Gipertsiklicheskie rasshireniya abelevykh grupp”, Gruppy, opredelyaemye svoistvami podgrupp, In-t matematiki AN USSR, Kiev, 1979, 16–37

[4] Zaitsev D. I., “Proizvedeniya abelevykh grupp”, Algebra i logika, 19:2 (1980), 94–106 | MR

[5] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR

[6] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[7] Maltsev A. I., “O gruppakh konechnogo ranga”, Matem. sb., 22:2 (1948), 351–352 | Zbl

[8] Maltsev A. I., “O nekotorykh klassakh beskonechnykh razreshimykh grupp”, Matem. sb., 28:3 (1951), 567–588 | Zbl

[9] Charin V. S., “O gruppakh, obladayuschikh vozrastayuschimi invariantnymi ryadami”, Matem. sb., 41:3 (1957), 297–316 | Zbl

[10] Dixon M. R., Kurdachenko L. A., Polyakov N. V., “On some ranks of infinite groups”, Ricerche Mat., 56:1 (2007), 43–59 | DOI | MR | Zbl

[11] Dornhoff L., “Jordan's theorem for solvable groups”, Proc. Amer. Math. Soc., 24:3 (1970), 533–537 | MR

[12] Guralnick R. M., Maroti A., “Average dimension of fixed point spaces with applications”, Adv. Math., 226 (2001), 298–308 | DOI | MR

[13] Kurdachenko L., Otal J., Subbotin I., Artinian Modules over Group Rings, Birkhäuser, Basel, 2007 | MR | Zbl

[14] Longobardi P., Maj M., Smith H., “Groups in which normal closures of elements have boundedly finite rank”, Glasgow Math. J., 51 (2009), 341–345 | DOI | MR | Zbl

[15] Neumann B. H., “Groups covered by permutable subsets”, J. London Math. Soc., 29:114 (1954), 236–248 | DOI | MR | Zbl

[16] Schur I., “Über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen”, J. Reine Angew. Math., 127 (1904), 20–50 | MR | Zbl

[17] Smith H., “A finiteness condition on normal closures of cyclic subgroups”, Math. Proc. Royal Irish Acad., 99A (1999), 179–183 | MR | Zbl

[18] Speiser A., Die Theorie der Gruppen von endlicher Ordnung, Dover, Berlin, 1937 | MR

[19] Wehrfritz B. A. F., Infinite Linear Groups, Springer, Berlin, 1973 | MR | Zbl