Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_6_a9, author = {L. A. Kurdachenko and N. N. Semko}, title = {Groups in which the normal closures of cyclic subgroups have bounded finite {Hirsch--Zaitsev} rank}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {207--228}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a9/} }
TY - JOUR AU - L. A. Kurdachenko AU - N. N. Semko TI - Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch--Zaitsev rank JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 207 EP - 228 VL - 20 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a9/ LA - ru ID - FPM_2015_20_6_a9 ER -
%0 Journal Article %A L. A. Kurdachenko %A N. N. Semko %T Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch--Zaitsev rank %J Fundamentalʹnaâ i prikladnaâ matematika %D 2015 %P 207-228 %V 20 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a9/ %G ru %F FPM_2015_20_6_a9
L. A. Kurdachenko; N. N. Semko. Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch--Zaitsev rank. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 207-228. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a9/
[1] Zaitsev D. I., “O razreshimykh gruppakh konechnogo ranga”, Gruppy s ogranicheniyami dlya podgrupp, Naukova dumka, Kiev, 1971, 115–130 | MR
[2] Zaitsev D. I., “Gruppy s dopolnyaemymi normalnymi podgruppami”, Nekotorye problemy teorii grupp, In-t matematiki AN USSR, Kiev, 1975, 30–74
[3] Zaitsev D. I., “Gipertsiklicheskie rasshireniya abelevykh grupp”, Gruppy, opredelyaemye svoistvami podgrupp, In-t matematiki AN USSR, Kiev, 1979, 16–37
[4] Zaitsev D. I., “Proizvedeniya abelevykh grupp”, Algebra i logika, 19:2 (1980), 94–106 | MR
[5] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR
[6] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR
[7] Maltsev A. I., “O gruppakh konechnogo ranga”, Matem. sb., 22:2 (1948), 351–352 | Zbl
[8] Maltsev A. I., “O nekotorykh klassakh beskonechnykh razreshimykh grupp”, Matem. sb., 28:3 (1951), 567–588 | Zbl
[9] Charin V. S., “O gruppakh, obladayuschikh vozrastayuschimi invariantnymi ryadami”, Matem. sb., 41:3 (1957), 297–316 | Zbl
[10] Dixon M. R., Kurdachenko L. A., Polyakov N. V., “On some ranks of infinite groups”, Ricerche Mat., 56:1 (2007), 43–59 | DOI | MR | Zbl
[11] Dornhoff L., “Jordan's theorem for solvable groups”, Proc. Amer. Math. Soc., 24:3 (1970), 533–537 | MR
[12] Guralnick R. M., Maroti A., “Average dimension of fixed point spaces with applications”, Adv. Math., 226 (2001), 298–308 | DOI | MR
[13] Kurdachenko L., Otal J., Subbotin I., Artinian Modules over Group Rings, Birkhäuser, Basel, 2007 | MR | Zbl
[14] Longobardi P., Maj M., Smith H., “Groups in which normal closures of elements have boundedly finite rank”, Glasgow Math. J., 51 (2009), 341–345 | DOI | MR | Zbl
[15] Neumann B. H., “Groups covered by permutable subsets”, J. London Math. Soc., 29:114 (1954), 236–248 | DOI | MR | Zbl
[16] Schur I., “Über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen”, J. Reine Angew. Math., 127 (1904), 20–50 | MR | Zbl
[17] Smith H., “A finiteness condition on normal closures of cyclic subgroups”, Math. Proc. Royal Irish Acad., 99A (1999), 179–183 | MR | Zbl
[18] Speiser A., Die Theorie der Gruppen von endlicher Ordnung, Dover, Berlin, 1937 | MR
[19] Wehrfritz B. A. F., Infinite Linear Groups, Springer, Berlin, 1973 | MR | Zbl