On independent families of normal subgroups in free groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 189-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a presentation $\mathcal{P}=\Bigl\langle\mathbf x\mid \bigcup\limits_{i=1}^n \mathbf r_i\Bigr\rangle$. Let $\mathbf R_i$ be the normal closure of the set $\mathbf r_i$ in the free group $\mathbf F$ with basis $\mathbf x$, $\mathcal{P}_i=\langle \mathbf{x}\mid\mathbf r_i\rangle$, $\mathbf N_i = \prod\limits_{j\neq i}\mathbf R_j$. In this paper, using geometric techniques of pictures, generators for $\frac{\mathbf R_i\cap \mathbf N_i}{[\mathbf R_i, \mathbf N_i]}$, $i=1,\ldots,n$, are obtained from a set of generators over $\{\mathcal P_i\mid i=1,\ldots, n\}$ for $\pi_2(\mathcal{P})$. As a corollary, we get a sufficient condition for the family $\{\mathbf R_1,\ldots,\mathbf R_n\}$ to be independent.
@article{FPM_2015_20_6_a8,
     author = {O. V. Kulikova},
     title = {On independent families of normal subgroups in free groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {189--206},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a8/}
}
TY  - JOUR
AU  - O. V. Kulikova
TI  - On independent families of normal subgroups in free groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 189
EP  - 206
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a8/
LA  - ru
ID  - FPM_2015_20_6_a8
ER  - 
%0 Journal Article
%A O. V. Kulikova
%T On independent families of normal subgroups in free groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 189-206
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a8/
%G ru
%F FPM_2015_20_6_a8
O. V. Kulikova. On independent families of normal subgroups in free groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 189-206. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a8/

[1] Bogley W. A., “An embedding for $\pi_2$ of a subcomplex of a finite contractible two-complex”, Glasgow Math. J., 33 (1991), 365–371 | DOI | MR | Zbl

[2] Bogley W. A., Gutiérrez M. A., “Mayer–Vietoris sequences in homotopy of $2$-complexes and in homology of groups”, J. Pure Appl. Algebra, 77 (1992), 39–65 | DOI | MR | Zbl

[3] Bogley W. A., Pride S. J., “Calculating generators of $\pi_2$”, Two-Dimensional Homotopy Theory and Combinatorial Group Theory, London Math. Soc. Lect. Notes Ser., 197, eds. C. Hog-Angeloni, W. Metzler, A. J. Sieradski, Cambridge Univ. Press, Cambridge, 1993, 157–188 | MR | Zbl

[4] Chiswell I. M., Collins D. J., Huebschmann J., “Aspherical group presentations”, Math. Z., 178 (1981), 1–36 | DOI | MR | Zbl

[5] Duncan A. J., Ellis G. J., Gilbert N. D., “A Mayer–Vietoris sequence in group homology and the decomposition of relation modules”, Glasgow Math. J., 37 (1995), 159–171 | DOI | MR | Zbl

[6] Gilbert N. D., “Identities between sets of relations”, J. Pure Appl. Algebra, 83 (1993), 263–276 | DOI | MR

[7] Gutiérrez M. A., Ratcliffe J. G., “On the second homotopy group”, Quart. J. Math. Oxford (2), 32 (1981), 45–55 | DOI | MR | Zbl

[8] Huebschmann J., “Aspherical $2$-complexes and an unsettled problem of J. H. C. Whitehead”, Math. Ann., 258 (1981), 17–37 | DOI | MR

[9] Igusa K., The Generalized Grassmann Invariant, preprint, Brandeis Univ., Waltham, 1979

[10] Kulikova O. V., “On intersections of normal subgroups in free groups”, Algebra Discrete Math., 2003, no. 1, 36–67 | MR | Zbl

[11] Lyndon R. S., “Dependence and independence in free groups”, J. Reine Angew. Math., 210 (1962), 148–174 | MR | Zbl

[12] Lyndon R. S., Schupp P. E., Combinatorial Group Theory, Springer, Berlin, 1977 | MR | Zbl

[13] Pride S. J., “Identities among relations of group presentations”, Proc. of the Workshop on Group Theory from a Geometrical Viewpoint, eds. E. Ghys et al., World Scientific, Singapore, 1991, 687–717 | MR | Zbl

[14] Rourke C. P., “Presentations and the trivial group”, Topology of Low Dimensional Manifolds, Lect. Notes Math., 722, ed. R. Fenn, Springer, Berlin, 1979, 134–143 | DOI | MR