@article{FPM_2015_20_6_a5,
author = {Yu. A. Kombarov},
title = {Complexity and structure of circuits for parity functions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {147--153},
year = {2015},
volume = {20},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a5/}
}
Yu. A. Kombarov. Complexity and structure of circuits for parity functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 147-153. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a5/
[1] Kombarov Yu. A., “O minimalnykh realizatsiyakh lineinykh bulevykh funktsii”, Diskret. analiz i issled. operatsii, 19:3 (2012), 39–57 | MR | Zbl
[2] Kombarov Yu. A., “O minimalnykh skhemakh v bazise Sheffera dlya lineinykh bulevykh funktsii”, Diskret. analiz i issled. operatsii, 20:4 (2013), 65–87 | MR | Zbl
[3] Redkin N. P., “Dokazatelstvo minimalnosti nekotorykh skhem iz funktsionalnykh elementov”, Problemy kibernetiki, 23 (1970), 83–101 | Zbl
[4] Redkin N. P., “O minimalnoi realizatsii lineinoi funktsii skhemoi iz funktsionalnykh elementov”, Kibernetika, 6 (1971), 31–38 | Zbl
[5] Shkrebela I. S., “O slozhnosti realizatsii lineinykh bulevykh funktsii skhemami iz funktsionalnykh elementov v bazise $\{x \to y,\, \overline{x}\}$”, Diskret. matem., 15:4 (2003), 100–112 | DOI | MR | Zbl
[6] Lai H. Ch., Muroga S., “Logic networks with a minimum number of NOR (NAND) gates for parity functions of $n$ variables”, IEEE Trans. Comput., C-36:2 (1987), 157–166
[7] Podolskaya O., On circuit complexity of parity and majority functions in antichain basis, arXiv: 1410.2456 [cs.CC]
[8] Wegner I., “The complexity of the parity function in unbounded fan-in, unbounded depth circuits”, Theor. Comput. Sci., 85 (1991), 155–170 | DOI | MR