Graded quotient rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 77-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey is based on the PhD Thesis which was defended at the Dissertation council of the Faculty of Mechanics and Mathematics of Moscow State University on December 6, 2013. This paper is devoted to the study of quotient rings of rings graded by a group. Graded analogs of the Faith–Utumi theorem of orders of matrix rings, Goldie's theorems of orders of completely reducible rings are proved and the orthogonal graded completion, which is an analog of the quotient ring underlying the orthogonal completion theory of Beidar–Mikhalev, is constructed.
@article{FPM_2015_20_6_a4,
     author = {A. L. Kanunnikov},
     title = {Graded quotient rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {77--145},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a4/}
}
TY  - JOUR
AU  - A. L. Kanunnikov
TI  - Graded quotient rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 77
EP  - 145
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a4/
LA  - ru
ID  - FPM_2015_20_6_a4
ER  - 
%0 Journal Article
%A A. L. Kanunnikov
%T Graded quotient rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 77-145
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a4/
%G ru
%F FPM_2015_20_6_a4
A. L. Kanunnikov. Graded quotient rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 77-145. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a4/

[1] Avraamova O. D., Obobschennye teoremy plotnosti, Dis.\ldots kand. fiz.-mat. nauk, M., 1989

[2] Balaba I. N., “Koltsa chastnykh polupervichnykh graduirovannykh kolets”, Tr. mezhdunar. sem. «Universalnaya algebra i prilozheniya» (Volgograd, 2000), 21–28 | Zbl

[3] Balaba I. N., Graduirovannye koltsa i moduli, Dis.\ldots dokt. fiz.-mat. nauk, M., 2012

[4] Balaba I. N., Efremov V. A., “Graduirovannye koltsa chastnykh polupervichnykh graduirovannykh kolets”, Chebyshevskii sb., 11:1 (33) (2010), 20–30 | MR | Zbl

[5] Balaba I. N., Kanunnikov A. L., Mikhalev A. V., “Graduirovannye koltsa chastnykh assotsiativnykh kolets. I”, Fundament. i prikl. matem., 17:2 (2011/2012), 3–74 | MR

[6] Beidar K. I., “Koltsa s obobschennymi tozhdestvami. I”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1977, no. 2, 19–36 | MR

[7] Beidar K. I., “Koltsa chastnykh polupervichnykh kolets”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1978, no. 5, 36–43 | MR | Zbl

[8] Beidar K. I., Mikhalev A. V., “Ortogonalnaya polnota i algebraicheskie sistemy”, UMN, 40:6 (1985), 79–115 | MR | Zbl

[9] Beidar K. I., Mikhalev A. V., “Funktor ortogonalnogo popolneniya”, Abelevy gruppy i moduli, 1986, no. 4, 3–19 | Zbl

[10] Dzhekobson N., Stroenie kolets, Izd. inostr. lit., M., 1961 | MR

[11] Zalesskii A. E., Mikhalev A. V., “Gruppovye koltsa”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 2, 1973, 5–118

[12] Zakharov V. K., “Ortopopolnenie modulei, kolets i bulevykh algebr”, Uporyadochennye mnozhestva i reshetki, 1976, no. 4, 54–65

[13] Kanunnikov A. L., “Graduirovannye varianty teoremy Goldi”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2011, no. 3, 46–50 | MR | Zbl

[14] Kanunnikov A. L., “Graduirovannye varianty teoremy Goldi. II”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2013, no. 3, 47–51 | MR | Zbl

[15] Kanunnikov A. L., “Ob odnom primenenii metoda ortogonalnoi polnoty v teorii graduirovannykh kolets”, Algebra i logika, 52:2 (2013), 145–154 | MR | Zbl

[16] Kanunnikov A. L., “Ortogonalnoe graduirovannoe popolnenie graduirovanno polupervichnykh kolets”, Fundament. i prikl. matem., 17:7 (2011/2012), 117–150

[17] Kanunnikov A. L., “Poryadki v graduirovannykh matrichnykh koltsakh”, Vestn. MGADA, 2013, no. 1 (20), 52–56

[18] Lambek I., Koltsa i moduli, Faktorial Press, M., 2005 | MR

[19] Mikhalev A. V., “Ortogonalno polnye mnogosortnye sistemy”, DAN SSSR, 289:6 (1986), 1304–1308 | MR

[20] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[21] Feis K., Algebra: koltsa, moduli i kategorii, v. I, Mir, M., 1977 | MR

[22] Kharchenko V. K., Nekommutativnaya teoriya Galua, Nauchnaya kniga, Novosibirsk, 1996 | MR

[23] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[24] Beidar K. I., Martindale W. S., Mikhalev A. V., Rings with Generalized Identities, Marcel Dekker, New York, 1995 | MR

[25] Chen-Lian Chuang, “Boolean valued models and semiprime rings”, Rings and Nearrings, Proc. Int. Conf. Algebra in Memory of Kostia Beidar, Walter de Gruyter, Berlin, 2005, 23–53 | MR

[26] Goldie A. W., “The structure of prime rings under ascending chain conditions”, Proc. London Math. Soc., 8 (1958), 589–608 | DOI | MR | Zbl

[27] Goldie A. W., “Semi-prime rings with maximal conditions”, Proc. London Math. Soc., 10 (1960), 201–220 | DOI | MR | Zbl

[28] Goldie A. W., “Non-commutative principal ideal rings”, Arch. Math., 13 (1962), 213–221 | DOI | MR | Zbl

[29] Goodearl K., Stafford T., “The graded version of Goldie's theorem”, Algebra and Its Applications, Int. Conf. Algebra and Its Aplications (March 25–28, 1999, Ohio Univ., Athens), Contemp. Math., 259, Amer. Math. Soc., Providence, 2000, 237–240 | DOI | MR | Zbl

[30] Herstein I. N., “A note on derivations”, Canad. Math. Bull., 21 (1978), 369–370 | DOI | MR | Zbl

[31] Jatengaonkar A. V., Left Principal Ideal Rings, Lect. Notes Math., 123, Springer, Berlin, 1970 | DOI | MR

[32] Jespers E., Wauters P., “A general notion of noncommutative Krull rings”, J. Algebra, 112 (1988), 388–415 | DOI | MR | Zbl

[33] Liu S., Beattie M., Fang H.,, “Graded division rings and the Jacobson density theorem”, J. Boijing Norm. Univ. (Nat. Sci.), 27:2 (1991), 129–134 | MR | Zbl

[34] Năstăsescu C., “Some construction over graded rings. Application”, J. Algebra, 120 (1989), 119–138 | DOI | MR

[35] Năstăsescu C., Nauwelaerts E., van Oystaeyen F., “Arithmetically graded rings revisited”, Commun. Algebra, 14:10 (1986), 1191–2017 | MR

[36] Năstăsescu C., van Oystaeyen F., Graded and Filtered Rings and Modules, Lect. Notes Math., 758, Springer, Berlin, 1979 | MR

[37] Năstăsescu C., van Oystaeyen F., Graded Ring Theory, North-Holland, Amsterdam, 1982 | MR

[38] Năstăsescu C., van Oystayen F., Methods of Graded Rings, North-Holland, Amsterdam, 2004

[39] Tewari K., “Complexes over a complete algebra of quotients”, Canad. J. Math., 19 (1967), 40–57 | DOI | MR | Zbl

[40] Utumi Y., “On quotient rings”, Osaka J. Math., 8 (1956), 1–18 | MR | Zbl

[41] Yahya H., “A note on graded regular rings”, Commun. Algebra, 25:1 (1997), 223–228 | DOI | MR | Zbl