Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_6_a2, author = {E. M. Vechtomov and N. V. Shalaginova}, title = {Semirings of continuous $(0,\infty]$-valued functions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {43--64}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/} }
TY - JOUR AU - E. M. Vechtomov AU - N. V. Shalaginova TI - Semirings of continuous $(0,\infty]$-valued functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 43 EP - 64 VL - 20 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/ LA - ru ID - FPM_2015_20_6_a2 ER -
E. M. Vechtomov; N. V. Shalaginova. Semirings of continuous $(0,\infty]$-valued functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 43-64. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/
[1] Varankina V. I., “Maksimalnye idealy v polukoltsakh nepreryvnykh funktsii”, Fundament. i prikl. matem., 1:4 (1995), 923–937 | MR | Zbl
[2] Varankina V. I., Vechtomov E. M., Semenova I. A., “Polukoltsa nepreryvnykh neotritsatelnykh funktsii: delimost, idealy, kongruentsii”, Fundament. i prikl. matem., 4:2 (1998), 493–510 | MR | Zbl
[3] Vechtomov E. M., “Distributivnye koltsa nepreryvnykh funktsii i F-prostranstva”, Matem. zametki., 34:3 (1983), 321–332 | MR | Zbl
[4] Vechtomov E. M., “Voprosy opredelyaemosti topologicheskikh prostranstv algebraicheskimi sistemami nepreryvnykh funktsii”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 28, 1990, 3–46 | MR
[5] Vechtomov E. M., “Koltsa nepreryvnykh funktsii. Algebraicheskie aspekty”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 29, 1991, 119–191 | MR | Zbl
[6] Vechtomov E. M., Lubyagina E. N., “Reshetki nepreryvnykh funktsii so znacheniyami v edinichnom otrezke”, Vestn. Syktyvkar. un-ta. Ser. 1: Matematika. Mekhanika. Informatika, 2011, no. 14, 3–20
[7] Vechtomov E. M., Lubyagina E. N., “Polukoltsa nepreryvnykh $[0,1]$-znachnykh funktsii”, Fundament. i prikl. matem., 7:4 (2012), 53–82
[8] Vechtomov E. M., Lubyagina E. N., Chermnykh V. V., Elementy teorii polukolets, Raduga-Press, Kirov, 2012
[9] Vechtomov E. M., Petrov A. A., “Multiplikativno idempotentnye polukoltsa”, Fundament. i prikl. matem., 18:4 (2013), 41–70 | MR
[10] Vechtomov E. M., Sidorov V. V., Chuprakov D. V., Polukoltsa nepreryvnykh funktsii, Izd-vo VyatGGU, Kirov, 2011
[11] Vechtomov E. M., Shalaginova N. V., “Prostye idealy v chastichnykh polukoltsakh nepreryvnykh $[0,\infty]$-znachnykh funktsii”, Vestn. Perm. un-ta. Matematika. Mekhanika. Informatika, 2014, no. 1, 5–12
[12] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR
[13] Maslov V. P., Kolokoltsov V. N., Idempotentnyi analiz i ego prilozhenie v optimalnom upravlenii, Nauka, M., 1994
[14] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[15] Gillman L., Henriksen M., “Concerning rings of continuous functions”, Trans. Amer. Math. Soc., 77:2 (1954), 340–362 | DOI | MR | Zbl
[16] Gillman L., Henriksen M., “Rings of continuous functions in which every finitely generated ideal is principal”, Trans. Amer. Math. Soc., 82:2 (1956), 366–391 | DOI | MR | Zbl
[17] Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York, 1976 | MR | Zbl
[18] Golan J. S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR | Zbl
[19] Gondran M., Minoux M., Graphs, Dioids and Semirings: New Models and Algorithms, Springer, Berlin, 2008 | MR | Zbl
[20] Stone M., “Applications of the theory of Boolean rings to general topology”, Trans. Amer. Math. Soc., 41:3 (1937), 375–481 | DOI | MR