Semirings of continuous $(0,\infty]$-valued functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 43-64

Voir la notice de l'article provenant de la source Math-Net.Ru

The semiring $C^{\infty}(X)$ of all continuous functions on an arbitrary topological space $X$ with values in the topological semiring $(0,\infty]$ is studied. General properties of semirings $C^\infty(X)$ are considered. Properties of lattices of ideals and congruences of semirings $C^{\infty}(X)$ over the $\mathrm{P}$-spaces $X$, the $\mathrm{F}$-spaces $X$, and the finite discrete spaces are proved.
@article{FPM_2015_20_6_a2,
     author = {E. M. Vechtomov and N. V. Shalaginova},
     title = {Semirings of continuous $(0,\infty]$-valued functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {43--64},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - N. V. Shalaginova
TI  - Semirings of continuous $(0,\infty]$-valued functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 43
EP  - 64
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/
LA  - ru
ID  - FPM_2015_20_6_a2
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A N. V. Shalaginova
%T Semirings of continuous $(0,\infty]$-valued functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 43-64
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/
%G ru
%F FPM_2015_20_6_a2
E. M. Vechtomov; N. V. Shalaginova. Semirings of continuous $(0,\infty]$-valued functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 43-64. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/