Semirings of continuous $(0,\infty]$-valued functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 43-64
Voir la notice de l'article provenant de la source Math-Net.Ru
The semiring $C^{\infty}(X)$ of all continuous functions on an arbitrary topological space $X$ with values in the topological semiring $(0,\infty]$ is studied. General properties of semirings $C^\infty(X)$ are considered. Properties of lattices of ideals and congruences of semirings $C^{\infty}(X)$ over the $\mathrm{P}$-spaces $X$, the $\mathrm{F}$-spaces $X$, and the finite discrete spaces are proved.
@article{FPM_2015_20_6_a2,
author = {E. M. Vechtomov and N. V. Shalaginova},
title = {Semirings of continuous $(0,\infty]$-valued functions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {43--64},
publisher = {mathdoc},
volume = {20},
number = {6},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/}
}
TY - JOUR AU - E. M. Vechtomov AU - N. V. Shalaginova TI - Semirings of continuous $(0,\infty]$-valued functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 43 EP - 64 VL - 20 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/ LA - ru ID - FPM_2015_20_6_a2 ER -
E. M. Vechtomov; N. V. Shalaginova. Semirings of continuous $(0,\infty]$-valued functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 43-64. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/