Semirings of continuous $(0,\infty]$-valued functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 43-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The semiring $C^{\infty}(X)$ of all continuous functions on an arbitrary topological space $X$ with values in the topological semiring $(0,\infty]$ is studied. General properties of semirings $C^\infty(X)$ are considered. Properties of lattices of ideals and congruences of semirings $C^{\infty}(X)$ over the $\mathrm{P}$-spaces $X$, the $\mathrm{F}$-spaces $X$, and the finite discrete spaces are proved.
@article{FPM_2015_20_6_a2,
     author = {E. M. Vechtomov and N. V. Shalaginova},
     title = {Semirings of continuous $(0,\infty]$-valued functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {43--64},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - N. V. Shalaginova
TI  - Semirings of continuous $(0,\infty]$-valued functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 43
EP  - 64
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/
LA  - ru
ID  - FPM_2015_20_6_a2
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A N. V. Shalaginova
%T Semirings of continuous $(0,\infty]$-valued functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 43-64
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/
%G ru
%F FPM_2015_20_6_a2
E. M. Vechtomov; N. V. Shalaginova. Semirings of continuous $(0,\infty]$-valued functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 43-64. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a2/

[1] Varankina V. I., “Maksimalnye idealy v polukoltsakh nepreryvnykh funktsii”, Fundament. i prikl. matem., 1:4 (1995), 923–937 | MR | Zbl

[2] Varankina V. I., Vechtomov E. M., Semenova I. A., “Polukoltsa nepreryvnykh neotritsatelnykh funktsii: delimost, idealy, kongruentsii”, Fundament. i prikl. matem., 4:2 (1998), 493–510 | MR | Zbl

[3] Vechtomov E. M., “Distributivnye koltsa nepreryvnykh funktsii i F-prostranstva”, Matem. zametki., 34:3 (1983), 321–332 | MR | Zbl

[4] Vechtomov E. M., “Voprosy opredelyaemosti topologicheskikh prostranstv algebraicheskimi sistemami nepreryvnykh funktsii”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 28, 1990, 3–46 | MR

[5] Vechtomov E. M., “Koltsa nepreryvnykh funktsii. Algebraicheskie aspekty”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 29, 1991, 119–191 | MR | Zbl

[6] Vechtomov E. M., Lubyagina E. N., “Reshetki nepreryvnykh funktsii so znacheniyami v edinichnom otrezke”, Vestn. Syktyvkar. un-ta. Ser. 1: Matematika. Mekhanika. Informatika, 2011, no. 14, 3–20

[7] Vechtomov E. M., Lubyagina E. N., “Polukoltsa nepreryvnykh $[0,1]$-znachnykh funktsii”, Fundament. i prikl. matem., 7:4 (2012), 53–82

[8] Vechtomov E. M., Lubyagina E. N., Chermnykh V. V., Elementy teorii polukolets, Raduga-Press, Kirov, 2012

[9] Vechtomov E. M., Petrov A. A., “Multiplikativno idempotentnye polukoltsa”, Fundament. i prikl. matem., 18:4 (2013), 41–70 | MR

[10] Vechtomov E. M., Sidorov V. V., Chuprakov D. V., Polukoltsa nepreryvnykh funktsii, Izd-vo VyatGGU, Kirov, 2011

[11] Vechtomov E. M., Shalaginova N. V., “Prostye idealy v chastichnykh polukoltsakh nepreryvnykh $[0,\infty]$-znachnykh funktsii”, Vestn. Perm. un-ta. Matematika. Mekhanika. Informatika, 2014, no. 1, 5–12

[12] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR

[13] Maslov V. P., Kolokoltsov V. N., Idempotentnyi analiz i ego prilozhenie v optimalnom upravlenii, Nauka, M., 1994

[14] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[15] Gillman L., Henriksen M., “Concerning rings of continuous functions”, Trans. Amer. Math. Soc., 77:2 (1954), 340–362 | DOI | MR | Zbl

[16] Gillman L., Henriksen M., “Rings of continuous functions in which every finitely generated ideal is principal”, Trans. Amer. Math. Soc., 82:2 (1956), 366–391 | DOI | MR | Zbl

[17] Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York, 1976 | MR | Zbl

[18] Golan J. S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR | Zbl

[19] Gondran M., Minoux M., Graphs, Dioids and Semirings: New Models and Algorithms, Springer, Berlin, 2008 | MR | Zbl

[20] Stone M., “Applications of the theory of Boolean rings to general topology”, Trans. Amer. Math. Soc., 41:3 (1937), 375–481 | DOI | MR