The Leibniz differential and the Perron--Stieltjes integral
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 237-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

We implement Leibniz's idea about the differential as the length of an infinitesimally small elementary interval (a monad) in the form satisfying modern standards of rigor. The concept of sequential differential introduced in this paper is shown to be in good alignment with the standard convention of the integral calculus. As an application of this concept we simplify and generalize the construction of the Perron–Stieltjes integral.
@article{FPM_2015_20_6_a11,
     author = {E. V. Shchepin},
     title = {The {Leibniz} differential and the {Perron--Stieltjes} integral},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {237--258},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a11/}
}
TY  - JOUR
AU  - E. V. Shchepin
TI  - The Leibniz differential and the Perron--Stieltjes integral
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 237
EP  - 258
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a11/
LA  - ru
ID  - FPM_2015_20_6_a11
ER  - 
%0 Journal Article
%A E. V. Shchepin
%T The Leibniz differential and the Perron--Stieltjes integral
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 237-258
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a11/
%G ru
%F FPM_2015_20_6_a11
E. V. Shchepin. The Leibniz differential and the Perron--Stieltjes integral. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 237-258. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a11/

[1] Kolmogorov A. N., “Issledovanie ponyatiya integrala”, Kolmogorov A. N. Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 96–136 | MR

[2] De Lopital G. F. A., Analiz beskonechno malykh, GTTI, M., 1935

[3] Lukashenko T. P., Skvortsov V. A., Solodov A. P., Obobschennye integraly, Librokom, M., 2011

[4] Leader S., “What is a differential? A new answer from the generalized Riemann integral”, Am. Math. Month., 93:5 (1986), 348–356 | DOI | MR | Zbl

[5] Leader S., The Kurzweil–Henstock Integral and Its Differential: A Unified Theory of Integration on $\mathbb R$ and $\mathbb R^n$, Pure Appl. Math., 242, Chapman Hall/CRC, 2001 | MR

[6] Ward A. J., “The Perron–Stieltjes integral”, Math. Z., 41 (1936), 578–604 | DOI | MR