The Leibniz differential and the Perron–Stieltjes integral
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 237-258
Cet article a éte moissonné depuis la source Math-Net.Ru
We implement Leibniz's idea about the differential as the length of an infinitesimally small elementary interval (a monad) in the form satisfying modern standards of rigor. The concept of sequential differential introduced in this paper is shown to be in good alignment with the standard convention of the integral calculus. As an application of this concept we simplify and generalize the construction of the Perron–Stieltjes integral.
@article{FPM_2015_20_6_a11,
author = {E. V. Shchepin},
title = {The {Leibniz} differential and the {Perron{\textendash}Stieltjes} integral},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {237--258},
year = {2015},
volume = {20},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a11/}
}
E. V. Shchepin. The Leibniz differential and the Perron–Stieltjes integral. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 237-258. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a11/
[1] Kolmogorov A. N., “Issledovanie ponyatiya integrala”, Kolmogorov A. N. Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 96–136 | MR
[2] De Lopital G. F. A., Analiz beskonechno malykh, GTTI, M., 1935
[3] Lukashenko T. P., Skvortsov V. A., Solodov A. P., Obobschennye integraly, Librokom, M., 2011
[4] Leader S., “What is a differential? A new answer from the generalized Riemann integral”, Am. Math. Month., 93:5 (1986), 348–356 | DOI | MR | Zbl
[5] Leader S., The Kurzweil–Henstock Integral and Its Differential: A Unified Theory of Integration on $\mathbb R$ and $\mathbb R^n$, Pure Appl. Math., 242, Chapman Hall/CRC, 2001 | MR
[6] Ward A. J., “The Perron–Stieltjes integral”, Math. Z., 41 (1936), 578–604 | DOI | MR