On homogeneous mappings of finitely presented modules over the ring of polyadic numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 229-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup $(R,\cdot)$ is said to be a UA-ring if there exists a unique binary operation $+$ making $(R,\cdot,+)$ into a ring. We study finitely presented $\hat{Z}$-modules with UA-rings of endomorphisms.
@article{FPM_2015_20_6_a10,
     author = {D. S. Chistyakov},
     title = {On homogeneous mappings of finitely presented modules over the ring of polyadic numbers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {229--235},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a10/}
}
TY  - JOUR
AU  - D. S. Chistyakov
TI  - On homogeneous mappings of finitely presented modules over the ring of polyadic numbers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 229
EP  - 235
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a10/
LA  - ru
ID  - FPM_2015_20_6_a10
ER  - 
%0 Journal Article
%A D. S. Chistyakov
%T On homogeneous mappings of finitely presented modules over the ring of polyadic numbers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 229-235
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a10/
%G ru
%F FPM_2015_20_6_a10
D. S. Chistyakov. On homogeneous mappings of finitely presented modules over the ring of polyadic numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 229-235. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a10/

[1] Lyubimtsev O. V., “Separabelnye abelevy gruppy bez krucheniya s UA-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[2] Lyubimtsev O. V., “Periodicheskie abelevy gruppy s UA-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | DOI | MR | Zbl

[3] Lyubimtsev O. V., Chistyakov D. S., “Abelevy gruppy kak UA-moduli nad koltsom $\mathbb{Z}$”, Matem. zametki, 87:3 (2010), 412–416 | DOI | MR | Zbl

[4] Mikhalëv A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:177 (1988), 210–224 | Zbl

[5] Chistyakov D. S., “Abelevy gruppy kak UA-moduli nad svoim koltsom endomorfizmov”, Matem. zametki, 91:6 (2012), 934–941 | DOI | Zbl

[6] Chistyakov D. S., “Odnorodnye otobrazheniya abelevykh grupp”, Izv. vyssh. uchebn. zaved. Matematika, 2014, no. 2, 61–68 | Zbl

[7] Albrecht U., Breaz S., Wickless W., “Generalized endoprimal Abelian groups”, J. Algebra Its Appl., 5:1 (2006), 1–17 | DOI | MR | Zbl

[8] Hausen J., Johnson J. A., “Centralizer near-rings that are rings”, J. Austral. Math. Soc., 59:2 (1995), 173–183 | DOI | MR | Zbl

[9] Van der Merwe A. B., “Unique addition modules”, Commun. Algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl