Structure graphs of rings: definitions and first results
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 181-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quadratic Vieta formulas $(x,y)\mapsto(u,v)=(x+y,xy)$ in the complex geometry define a two-fold branched covering $\mathbb C^2\to\mathbb C^2$ ramified over the parabola $u^2=4v$. Thinking about topics considered in Arnold's paper Topological content of the Maxwell theorem on multipole representation of spherical functions, I came to a very simple idea: in fact, these formulas describe the algebraic structure, i.e., addition and multiplication, of the complex numbers. What if, instead of the field of complex numbers, we consider an arbitrary ring? Namely for an arbitrary ring $A$ (commutative, with unity) consider the mapping $\Phi\colon A^2\to A^2$ defined by the Vieta formulas $(x,y)\mapsto(u,v)=(x+y,xy)$. What kind of algebraic properties of the ring itself does this map reflect? At first, it is interesting to investigate simplest finite rings $A=\mathbb Z_m$ and $A=\mathbb Z_k\times\mathbb Z_m$. Recently, it has been very popular to consider graphs associated to rings (the zero-divisor graph, the Cayley graph, etc.). In the present paper, we study the directed graph defined by the Vieta mapping $\Phi$.
@article{FPM_2015_20_3_a8,
     author = {A. T. Lipkovski},
     title = {Structure graphs of rings: definitions and first results},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {181--190},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a8/}
}
TY  - JOUR
AU  - A. T. Lipkovski
TI  - Structure graphs of rings: definitions and first results
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 181
EP  - 190
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a8/
LA  - ru
ID  - FPM_2015_20_3_a8
ER  - 
%0 Journal Article
%A A. T. Lipkovski
%T Structure graphs of rings: definitions and first results
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 181-190
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a8/
%G ru
%F FPM_2015_20_3_a8
A. T. Lipkovski. Structure graphs of rings: definitions and first results. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 181-190. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a8/

[1] Arnold V. I., “Topological content of the Maxwell theorem on multipole representation of spherical functions”, Topol. Methods Nonlinear Analysis, 7 (1996), 205–217 | MR | Zbl

[2] Daoub H., Konachni prsteni i usmereni grafovi: razvo? teori?e i algoritama, Univ. u Beogradu, Beograd, 2013

[3] Daoub H., Shafah O., Lipkovski A., “An association between digraphs and rings”, Filomat. (to appear)

[4] Hausken S., Skinner J., “Directed graphs of commutative rings”, Rose–Hulman Undergrad. Math. J., 14:2 (2013), 167–188 | MR

[5] Lipkovski A., “Digraphs associated with rings and some integer functions”, IX kongres matematichara Jugoslavije (Petrovats, 22–27 maj 1995), Zbornik rezimea, 32 | Zbl

[6] Lipkovski A., “Digraphs associated with finite rings”, Publ. Inst. Math., 92:106 (2012), 35–41 | DOI | MR | Zbl

[7] Lipkovski A., Shafah O., Daoub H., “Calculation of graphs of finite rings”, Proc. of the Int. Conf. “Mathematical and Informational Technologies” (Vrnjačka Banja, Serbia, August 27–31, 2011, Budva, Montenegro, August 27 – September 5, 2011), Report 177 http://conf.nsc.ru/MIT-2011