Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_3_a7, author = {H\^ong V\^an L\^e}, title = {Lower bounds for the circuit size of partially homogeneous polynomials}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {153--179}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a7/} }
Hông Vân Lê. Lower bounds for the circuit size of partially homogeneous polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 153-179. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a7/
[1] Baur W., Strassen V., “The complexity of partial derivatives”, Theor. Comput. Sci., 22 (1983), 317–330 | DOI | MR | Zbl
[2] Burgisser P., Clausen M., Shokrollali M. A., Algebraic Complexity Theory, Springer, Berlin, 1997 | MR | Zbl
[3] Fournier H., Limaye N., Malod G., Srinivasan S., Lower bounds for Depth $4$ Formulas Computing Iterated Matrix Multiplication, Electronic Colloquium on Computational Complexity (ECCC), TR13-100, 2013
[4] Zur Gathen A., “Feasible arithmetic computations: Valiant's hypothesis”, J. Symbol. Comput., 4 (1987), 137–172 | DOI | MR | Zbl
[5] Greuel G.-M., Pfister G., A Singular Introduction to Commutative Algebra, Springer, Berlin, 2007 | MR | Zbl
[6] Harris J., Algebraic Geometry. A First Course, Springer, Berlin, 1993 | MR
[7] Kalorkoti K., “A lower bound for the formula size of rational functions”, SIAM J. Comput., 14:3 (1985), 678–687 | DOI | MR | Zbl
[8] Lê H. V., Constructing elusive functions with help of evaluation mappings, arXiv: 1011.2887
[9] Mignon T., Ressayre N., “A quadratic bound for the determinant and permanent problem”, Int. Math. Res. Notices, 79 (2004), 4241–4253 | DOI | MR | Zbl
[10] Mulmuley K. D., Sohoni M., “Geometric complexity theory. I. An approach to the P vs. NP and related problems”, SIAM J. Comput., 31:2 (2001), 496–526 | DOI | MR | Zbl
[11] Nisan N., Wigderson A., “Hardness vs randomness”, J. Comput. Syst. Sci., 49:2 (1994), 149–167 | DOI | MR | Zbl
[12] Raz R., “Elusive functions and lower bounds for arithmetic circuits”, STOC'08, Proc. Fortieth Annual ACM Symposium on Theory of Computing, ACM, New York, 2008, 711–720 | MR | Zbl
[13] Razborov A., Rudich S., “Natural proofs”, J. Comput. Syst. Sci., 55:1, pt. 1 (1997), 24–35 | DOI | MR | Zbl
[14] Shpilka A., Yehudayoff A., “Arithmetic circuits: a survey of recent results and open questions”, Foundations and Trends in Theor. Comput. Sci., 5:3–4 (2010), 207–388 | MR
[15] Sombra M., “Bounds for the Hilbert function of polynomial ideals and for the degrees in the Nullstellensatz”, J. Pure Appl. Algebra, 117/118 (1996), 565–599 | MR
[16] Valiant L. G., “Completeness classes in algebra”, Conference Record of the Eleventh Ann. ACM Symp. on Theory of Computing (Atlanta, Ga, 1979), ACM, New York, 1979, 249–261 | MR
[17] Valiant L. G., “Reducibility by algebraic projections”, Logic and Algorithmic: an International Symposium in Honor of Ernst Specker, Monograph. Enseign. Math., 30, Genève, 1982, 365–380 | MR | Zbl