Liouville integrable generalized billiard flows and Poncelet type theorems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 113-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

“Glued geodesic flows” and, in particular, “generalized billiard flows” on Riemannian manifolds with boundary, and geodesic flows on piecewise smooth Riemannian manifolds are studied. We develop the approaches of Lazutkin (1993) and Tabachnikov (1993) for proving the Poncelet type closure theorems via applying the classical Liouville theorem to the billiard flow (respectively to the billiard map). We prove that the condition on the refraction/reflection law to respect the Huygens principle is not only sufficient, but also necessary for “local Liouville integrability” of the glued geodesic flow, more precisely for pairwise commutation of the “glued flows” corresponding to a maximal collection of local first integrals in involution homogeneous in momenta. A similar criterion for “local Liouville integrability” of the succession/billiard map is obtained.
@article{FPM_2015_20_3_a6,
     author = {E. A. Kudryavtseva},
     title = {Liouville integrable generalized billiard flows and {Poncelet} type theorems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {113--152},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a6/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - Liouville integrable generalized billiard flows and Poncelet type theorems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 113
EP  - 152
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a6/
LA  - ru
ID  - FPM_2015_20_3_a6
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T Liouville integrable generalized billiard flows and Poncelet type theorems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 113-152
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a6/
%G ru
%F FPM_2015_20_3_a6
E. A. Kudryavtseva. Liouville integrable generalized billiard flows and Poncelet type theorems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 113-152. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a6/

[1] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981 | MR

[2] Bolotin S.V., “Integriruemye bilyardy Birkgofa”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1990, no. 2, 33–36 | MR | Zbl

[3] Sypchenko I. V., Timonina D. S., “Zamknutye geodezicheskie na kusochno-gladkikh poverkhnostyakh vrascheniya postoyannoi krivizny”, Matem. sb., 206:5 (2015), 127–160 | DOI | MR | Zbl

[4] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl

[5] Fokicheva V. V., Fomenko A. T., “Topologiya i osobennosti billiardov”, Materialy mezhdunarodnoi konferentsii “Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina 2014”, Izd-vo Voronezhskogo un-ta, Voronezh, 2014, 372– 385

[6] Amiran E. Y., Smooth convex planar domains for which the billiard ball map is integrable are ellipses, Preprint, Math. Depart. Western Washington Univ., Bellingam, 1991 | MR

[7] Cayley A., “Developments on the porism of the in-and-circumscribed polygon”, Philosophical Mag., 7 (1854), 339–345

[8] Chang S. J., Crespi B., Shi K. J., “Elliptical billiard systems and the full Poncelet's theorem in $n$ dimensions”, J. Math. Phys., 34 (1993), 2242–2256 | DOI | MR | Zbl

[9] Chang S. J., Friedberg R., “Elliptical billiards and Poncelet's theorem”, J. Math. Phys., 29 (1988), 1537–1550 | DOI | MR | Zbl

[10] Chasles M., “Géométrie pure. Théorèmes sur les sections coniques confocales”, Ann. Math. Pures Appl., 18 (1827/1828), 269–276 | MR

[11] Halpern B., “Strange billiard tables”, Trans. Amer. Math. Soc., 237 (1977), 297–305 | DOI | MR

[12] Lazutkin V., KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, Berlin, 1993 | MR | Zbl

[13] Poncelet J.-V., Traité des propriétés projectives des figures, Mett, Paris, 1822

[14] Rom-Kedar V., Turaev D., “Billiards: A singular perturbation limit of smooth Hamiltonian flows”, Chaos, 22 (2012), 026102 | DOI | MR | Zbl

[15] Tabachnikov S., “Poncelet's theorem and dual billiards”, Enseign. Math., 39 (1993), 189–194 | MR | Zbl