Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_3_a6, author = {E. A. Kudryavtseva}, title = {Liouville integrable generalized billiard flows and {Poncelet} type theorems}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {113--152}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a6/} }
TY - JOUR AU - E. A. Kudryavtseva TI - Liouville integrable generalized billiard flows and Poncelet type theorems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 113 EP - 152 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a6/ LA - ru ID - FPM_2015_20_3_a6 ER -
E. A. Kudryavtseva. Liouville integrable generalized billiard flows and Poncelet type theorems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 113-152. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a6/
[1] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981 | MR
[2] Bolotin S.V., “Integriruemye bilyardy Birkgofa”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1990, no. 2, 33–36 | MR | Zbl
[3] Sypchenko I. V., Timonina D. S., “Zamknutye geodezicheskie na kusochno-gladkikh poverkhnostyakh vrascheniya postoyannoi krivizny”, Matem. sb., 206:5 (2015), 127–160 | DOI | MR | Zbl
[4] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl
[5] Fokicheva V. V., Fomenko A. T., “Topologiya i osobennosti billiardov”, Materialy mezhdunarodnoi konferentsii “Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina 2014”, Izd-vo Voronezhskogo un-ta, Voronezh, 2014, 372– 385
[6] Amiran E. Y., Smooth convex planar domains for which the billiard ball map is integrable are ellipses, Preprint, Math. Depart. Western Washington Univ., Bellingam, 1991 | MR
[7] Cayley A., “Developments on the porism of the in-and-circumscribed polygon”, Philosophical Mag., 7 (1854), 339–345
[8] Chang S. J., Crespi B., Shi K. J., “Elliptical billiard systems and the full Poncelet's theorem in $n$ dimensions”, J. Math. Phys., 34 (1993), 2242–2256 | DOI | MR | Zbl
[9] Chang S. J., Friedberg R., “Elliptical billiards and Poncelet's theorem”, J. Math. Phys., 29 (1988), 1537–1550 | DOI | MR | Zbl
[10] Chasles M., “Géométrie pure. Théorèmes sur les sections coniques confocales”, Ann. Math. Pures Appl., 18 (1827/1828), 269–276 | MR
[11] Halpern B., “Strange billiard tables”, Trans. Amer. Math. Soc., 237 (1977), 297–305 | DOI | MR
[12] Lazutkin V., KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, Berlin, 1993 | MR | Zbl
[13] Poncelet J.-V., Traité des propriétés projectives des figures, Mett, Paris, 1822
[14] Rom-Kedar V., Turaev D., “Billiards: A singular perturbation limit of smooth Hamiltonian flows”, Chaos, 22 (2012), 026102 | DOI | MR | Zbl
[15] Tabachnikov S., “Poncelet's theorem and dual billiards”, Enseign. Math., 39 (1993), 189–194 | MR | Zbl