Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_3_a12, author = {T. \v{S}ukilovi\'c}, title = {Isometry groups of $4$-dimensional nilpotent {Lie} groups}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {257--271}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a12/} }
T. Šukilović. Isometry groups of $4$-dimensional nilpotent Lie groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 257-271. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a12/
[1] Balaschenko V. V., Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., Odnorodnye prostranstva: teoriya i prilozheniya, Poligrafist, Khanty-Mansiisk, 2008
[2] Petrov A. Z., “Klassifikatsiya prostranstv, opredelyayuschikh polya tyagoteniya”, Uchën. zap. Kazan. gos. un-ta, 114, no. 8, 1954, 55–69 | MR
[3] Trofimov V. V., Fomenko A. T., “Integriruemost po Liuvillyu gamiltonovykh sistem na algebrakh Li”, UMN, 39:2 (1984), 3–56 | MR | Zbl
[4] Trofimov V. V., Fomenko A. T., “Geometricheskie i algebraicheskie mekhanizmy integriruemosti gamiltonovykh sistem na odnorodnykh prostranstvakh i algebrakh Li”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 16, 1987, 227–299 | MR | Zbl
[5] Del Barco V., Ovando G. P., “Isometric actions on pseudo-Riemannian nilmanifolds”, Ann. Global Anal. Geom., 45:2 (2014), 95–110 | DOI | MR | Zbl
[6] Bejancu A., Farran H. R., Foliations and Geometric Structures, Math. and Its Appl., 580, Springer, Berlin, 2006 | MR | Zbl
[7] Blau M., O'Loughlin M., “Homogeneous plane waves”, Nuclear Phys. B, 654 (2003), 135–176 | DOI | MR | Zbl
[8] Bokan N., Šukilović T., Vukmirović S., “Lorentz geometry of $4$-dimensional nilpotent Lie groups”, Geom. Dedicata, 177 (2015), 83–102 | DOI | MR | Zbl
[9] Cordero L. A., Parker P. E., “Left-invariant Lorentz metrics on $3$-dimensional Lie groups”, Rend. Mat. Appl., 7 (1997), 129–155 | MR
[10] Cordero L. A., Parker P. E., “Isometry groups of pseudoriemannian $2$-step nilpotent Lie groups”, Houston J. Math., 35:1 (2009), 49–72 | MR | Zbl
[11] Eberlein P., “Geometry of $2$-step nilpotent groups with a left invariant metric”, Ann. Sci. École Norm. Sup. (4), 27:5 (1994), 611–660 | MR | Zbl
[12] Guediri M., “Sur la complétude des pseudo-métriques invariantes à gauche sur les groupes de Lie nilpotents”, Rend. Sem. Mat. Univ. Pol. Torino, 52 (1994), 371–376 | MR | Zbl
[13] Homolya Sz., Kowalski O., “Simply connected two-step homogeneous nilmanifolds of dimension 5”, Note Mat., 26:1 (2006), 69–77 | MR | Zbl
[14] Kaplan A., “Riemannian nilmanifolds attached to Clifford modules”, Geom. Dedicata, 11:2 (1981), 127–136 | DOI | MR | Zbl
[15] Keane A. J., Tupper B. O., “Killing tensors in pp-wave spacetimes”, Classical Quantum Gravity, 27:24 (2010), 245011 | DOI | MR | Zbl
[16] Lauret J., “Homogeneous nilmanifolds of dimension 3 and 4”, Geom. Dedicata, 68 (1997), 145–155 | DOI | MR | Zbl
[17] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21:3 (1976), 293–329 | DOI | MR | Zbl
[18] Patera J., Sharp R. T., Winternitz P., Zassenhaus H., “Invariants of real low dimension Lie algebras”, J. Geom. Phys., 17:6 (1976), 986–994 | MR | Zbl
[19] Penrose R., “Any space-time has a plane wave as a limit”, Differential Geometry and Relativity, Math. Phys. Appl. Math., 3, Springer Netherlands, 1976, 271–275 | MR
[20] Warner F. W., Foundations of Differentiable Manifolds and Lie Groups, Scott Foresman, Glenview, 1971 | MR | Zbl