Isometry groups of $4$-dimensional nilpotent Lie groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 257-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to give a complete description of isometry groups on the $4$-dimensional simply connected nilpotent Lie groups. We distinguish between two geometrically distinct cases of degenerate and nondegenerate center of the group. Since Walker metrics appear as the underlying structure of neutral signature metrics on the nilpotent Lie groups with degenerate center, we find necessary and sufficient condition for them to locally admit the nilpotent group of isometries.
@article{FPM_2015_20_3_a12,
     author = {T. \v{S}ukilovi\'c},
     title = {Isometry groups of $4$-dimensional nilpotent {Lie} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {257--271},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a12/}
}
TY  - JOUR
AU  - T. Šukilović
TI  - Isometry groups of $4$-dimensional nilpotent Lie groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 257
EP  - 271
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a12/
LA  - ru
ID  - FPM_2015_20_3_a12
ER  - 
%0 Journal Article
%A T. Šukilović
%T Isometry groups of $4$-dimensional nilpotent Lie groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 257-271
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a12/
%G ru
%F FPM_2015_20_3_a12
T. Šukilović. Isometry groups of $4$-dimensional nilpotent Lie groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 257-271. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a12/

[1] Balaschenko V. V., Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., Odnorodnye prostranstva: teoriya i prilozheniya, Poligrafist, Khanty-Mansiisk, 2008

[2] Petrov A. Z., “Klassifikatsiya prostranstv, opredelyayuschikh polya tyagoteniya”, Uchën. zap. Kazan. gos. un-ta, 114, no. 8, 1954, 55–69 | MR

[3] Trofimov V. V., Fomenko A. T., “Integriruemost po Liuvillyu gamiltonovykh sistem na algebrakh Li”, UMN, 39:2 (1984), 3–56 | MR | Zbl

[4] Trofimov V. V., Fomenko A. T., “Geometricheskie i algebraicheskie mekhanizmy integriruemosti gamiltonovykh sistem na odnorodnykh prostranstvakh i algebrakh Li”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 16, 1987, 227–299 | MR | Zbl

[5] Del Barco V., Ovando G. P., “Isometric actions on pseudo-Riemannian nilmanifolds”, Ann. Global Anal. Geom., 45:2 (2014), 95–110 | DOI | MR | Zbl

[6] Bejancu A., Farran H. R., Foliations and Geometric Structures, Math. and Its Appl., 580, Springer, Berlin, 2006 | MR | Zbl

[7] Blau M., O'Loughlin M., “Homogeneous plane waves”, Nuclear Phys. B, 654 (2003), 135–176 | DOI | MR | Zbl

[8] Bokan N., Šukilović T., Vukmirović S., “Lorentz geometry of $4$-dimensional nilpotent Lie groups”, Geom. Dedicata, 177 (2015), 83–102 | DOI | MR | Zbl

[9] Cordero L. A., Parker P. E., “Left-invariant Lorentz metrics on $3$-dimensional Lie groups”, Rend. Mat. Appl., 7 (1997), 129–155 | MR

[10] Cordero L. A., Parker P. E., “Isometry groups of pseudoriemannian $2$-step nilpotent Lie groups”, Houston J. Math., 35:1 (2009), 49–72 | MR | Zbl

[11] Eberlein P., “Geometry of $2$-step nilpotent groups with a left invariant metric”, Ann. Sci. École Norm. Sup. (4), 27:5 (1994), 611–660 | MR | Zbl

[12] Guediri M., “Sur la complétude des pseudo-métriques invariantes à gauche sur les groupes de Lie nilpotents”, Rend. Sem. Mat. Univ. Pol. Torino, 52 (1994), 371–376 | MR | Zbl

[13] Homolya Sz., Kowalski O., “Simply connected two-step homogeneous nilmanifolds of dimension 5”, Note Mat., 26:1 (2006), 69–77 | MR | Zbl

[14] Kaplan A., “Riemannian nilmanifolds attached to Clifford modules”, Geom. Dedicata, 11:2 (1981), 127–136 | DOI | MR | Zbl

[15] Keane A. J., Tupper B. O., “Killing tensors in pp-wave spacetimes”, Classical Quantum Gravity, 27:24 (2010), 245011 | DOI | MR | Zbl

[16] Lauret J., “Homogeneous nilmanifolds of dimension 3 and 4”, Geom. Dedicata, 68 (1997), 145–155 | DOI | MR | Zbl

[17] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21:3 (1976), 293–329 | DOI | MR | Zbl

[18] Patera J., Sharp R. T., Winternitz P., Zassenhaus H., “Invariants of real low dimension Lie algebras”, J. Geom. Phys., 17:6 (1976), 986–994 | MR | Zbl

[19] Penrose R., “Any space-time has a plane wave as a limit”, Differential Geometry and Relativity, Math. Phys. Appl. Math., 3, Springer Netherlands, 1976, 271–275 | MR

[20] Warner F. W., Foundations of Differentiable Manifolds and Lie Groups, Scott Foresman, Glenview, 1971 | MR | Zbl