Hermitian algebraic $K$-theory and the root system~$D$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 251-256
Voir la notice de l'article provenant de la source Math-Net.Ru
For the root system $D$, we construct an analog of the Wagoner complex used in his proof of the equivalence of $K^Q_*$ and $K^{BN}_*$ (linear) algebraic $K$-theories. We prove that the corresponding $K$-theory $KU^D_*$ for the even orthogonal group is naturally isomorphic to the $KU^{BN}_*$-theory constructed by Yu. P. Solovyov and A. I. Nemytov.
@article{FPM_2015_20_3_a11,
author = {Th. Yu. Popelensky},
title = {Hermitian algebraic $K$-theory and the root system~$D$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {251--256},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a11/}
}
Th. Yu. Popelensky. Hermitian algebraic $K$-theory and the root system~$D$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 251-256. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a11/