Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_3_a11, author = {Th. Yu. Popelensky}, title = {Hermitian algebraic $K$-theory and the root system~$D$}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {251--256}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a11/} }
Th. Yu. Popelensky. Hermitian algebraic $K$-theory and the root system~$D$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 251-256. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a11/
[1] Klein I. S., Mikhalëv A. V., “Unitarnaya gruppa Steinberga nad koltsom s involyutsiei”, Algebra i logika, 9:5 (1970), 510–519 | MR
[2] Nemytov A. I., Solovev Yu. P., “$BN$-pary i ermitova $K$-teoriya”, Algebra, Izd-vo Mosk. un-ta, M., 1982, 102–118 | MR
[3] Anderson D., Karoubi M., Wagoner J., “Relations between algebraic $K$-theories”, Algebraic $K$-theory. I, Lect. Notes Math., 341, Springer, Berlin, 1973, 73–81 | DOI | MR
[4] Wagoner J., “Buildings, stratifications, and higher $K$-theory”, Algebraic $K$-theory. I, Lect. Notes Math., 341, Springer, Berlin, 1973, 148–165 | DOI | MR
[5] Wagoner J., “Equivalence of algebraic $K$-theories”, J. Pure Appl. Algebra, 11 (1977), 245–269 | DOI | MR