Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_3_a10, author = {Nguyen Tien Zung and Nguyen Thanh Thien}, title = {Reduction and integrability of stochastic dynamical systems}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {213--249}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a10/} }
TY - JOUR AU - Nguyen Tien Zung AU - Nguyen Thanh Thien TI - Reduction and integrability of stochastic dynamical systems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 213 EP - 249 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a10/ LA - ru ID - FPM_2015_20_3_a10 ER -
Nguyen Tien Zung; Nguyen Thanh Thien. Reduction and integrability of stochastic dynamical systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 213-249. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a10/
[1] Albeverio S., Fei S., “Remark on symmetry of stochastic dynamical systems and their conserved quantities”, J. Phys. A, 28 (1995), 6363–6371 | DOI | MR | Zbl
[2] Bismut J. M., Mecanique Aleatoire, Lect. Notes Math., 866, Springer, Berlin, 1981 | DOI | MR | Zbl
[3] Błaszak M, Domański Z., Sergyeyev A., Szablikowski B., “Integrable quantum Stäckel systems”, Phys. Lett. A, 377:38 (2013), 2564–2572 | DOI | MR
[4] Bolsinov A. V., Matveev V. S., “Geometrical interpretation of Benenti systems”, J. Geom. Phys., 44:4 (2003), 489–506 | DOI | MR | Zbl
[5] Borodin A. N., Freidlin M. I., “Fast oscillating random perturbations of dynamical systems with conservation laws”, Ann. Inst. H. Poincaré Probab. Statist., 31:3 (1995), 485–525 | MR | Zbl
[6] Duval C., Valent G., “Quantum integrability of quadratic Killing tensors”, J. Math. Phys., 46:5 (2005), 053516 | DOI | MR | Zbl
[7] Fomenko A. T., Bolsinov A. V., Integrable Hamiltonian Systems: Geometry, Topology, Classification, Chapman Hall/CRC, Boca Raton, 2004 | MR | Zbl
[8] Freidlin M., Weber M., “Random perturbations of dynamical systems and diffusion processes with conservation laws”, Probab. Theory Related Fields, 128:3 (2004), 441–466 | DOI | MR | Zbl
[9] Galmarino A. R., “Representation of an isotropic diffusion as a skew product”, Z. Wahrsch. Verw. Gebiete, 1:4 (1963), 359–378 | DOI | MR | Zbl
[10] Gitterman M., The Noisy Oscillator: The First Hundred Years, from Einstein Until Now, World Scientific, New York, 2005 | MR | Zbl
[11] Grove K., Karcher H., Ruh E. A., “Group actions and curvature”, Invent. Math., 23 (1974), 31–48 | DOI | MR | Zbl
[12] Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Processes, North-Holland Math. Lib., 24, North-Holland, 1981 | MR | Zbl
[13] Jovanovic B., “Symmetries and integrability”, Publ. Inst. Math. (Beograd), 84(98) (2008), 1–36 | DOI | MR | Zbl
[14] Kunita H., Stochastic Flows and Stochastic Differential Equations, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[15] Lázaro-Camí J.-A., Ortega J.-P., “Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations”, Stoch. Dyn., 9:1 (2009), 1–46 | DOI | MR | Zbl
[16] Li Xue-Mei, “An averaging principle for a completely integrable stochastic Hamiltonian system”, Nonlinearity, 21:4 (2008), 803–822 | DOI | MR | Zbl
[17] Liao M., “A decomposition of Markov processes via group action”, J. Theor. Probab., 22:1 (2009), 164–185 | DOI | MR | Zbl
[18] Liouville J., “Note sur l'intégration des équations différentielles de la dynamique”, J. Math. Pures Appl., 20 (1855), 137–138
[19] Markus L., Weerasinghe A., “Stochastic oscillators”, J. Differ. Equ., 71:2 (1988), 288–314 | DOI | MR | Zbl
[20] Matveev V. S., “Quantum integrability of the Beltrami–Laplace operator for geodesically equivalent metrics”, Russ. Math. Dokl., 61:2 (2000), 216–219 | MR | Zbl
[21] Misawa T., “Conserved quantities and symmetries related to stochastic dynamical systems”, Ann. Inst. Stat. Math., 51:4 (1999), 779–802 | DOI | MR | Zbl
[22] Øksendal B., Stochastic Differential Equations, Springer, Berlin, 2003 | MR
[23] Pauwels E. J., Rogers L. C. G., “Skew-product decompositions of Brownian motions”, Contemp. Math., 73 (1988), 237–262 | DOI | MR | Zbl
[24] Taylor M., Pseudodifferential Operators, Springer, New York, 1996 | MR
[25] Zung N. T., “Torus actions and integrable systems”, Topological Methods in the Theory of Integrable Systems, Cambridge Sci. Publ., Cambridge, 2006, 289–328 | MR | Zbl
[26] Zung N. T., A general approach to the problem of action-angle variables, In preparation
[27] Zung N. T., Thien N. T., Physics-like second-order models of financial assets prices, In preparation