Argument shift method and sectional operators: applications to differential geometry
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 5-31

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is an attempt to present, in a systematic way, a construction that establishes an interesting relationship between some ideas and notions well-known in the theory of integrable systems on Lie algebras and a rather different area of mathematics studying projectively equivalent Riemannian and pseudo-Riemannian metrics.
@article{FPM_2015_20_3_a0,
     author = {A. V. Bolsinov},
     title = {Argument shift method and sectional operators: applications to differential geometry},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--31},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a0/}
}
TY  - JOUR
AU  - A. V. Bolsinov
TI  - Argument shift method and sectional operators: applications to differential geometry
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 5
EP  - 31
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a0/
LA  - ru
ID  - FPM_2015_20_3_a0
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%T Argument shift method and sectional operators: applications to differential geometry
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 5-31
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a0/
%G ru
%F FPM_2015_20_3_a0
A. V. Bolsinov. Argument shift method and sectional operators: applications to differential geometry. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 5-31. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a0/