Argument shift method and sectional operators: applications to differential geometry
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 5-31
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is an attempt to present, in a systematic way, a construction that establishes an interesting relationship between some ideas and notions well-known in the theory of integrable systems on Lie algebras and a rather different area of mathematics studying projectively equivalent Riemannian and pseudo-Riemannian metrics.
@article{FPM_2015_20_3_a0,
author = {A. V. Bolsinov},
title = {Argument shift method and sectional operators: applications to differential geometry},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {5--31},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a0/}
}
TY - JOUR AU - A. V. Bolsinov TI - Argument shift method and sectional operators: applications to differential geometry JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 5 EP - 31 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a0/ LA - ru ID - FPM_2015_20_3_a0 ER -
A. V. Bolsinov. Argument shift method and sectional operators: applications to differential geometry. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 5-31. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a0/