Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_2_a8, author = {V. S. Matveev}, title = {On the number of nontrivial projective transformations of closed manifolds}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {125--131}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a8/} }
V. S. Matveev. On the number of nontrivial projective transformations of closed manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 125-131. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a8/
[1] Calderbank D., Eastwood M., Matveev V. S., Neusser K., C-projective geometry: background and open problems, In preparation
[2] Eastwood M., Matveev V. S., “Metric connections in projective differential geometry”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2007, 339–351 | DOI | MR
[3] Kiosak V., Matveev V. S., “Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two”, Comm. Math. Phys., 297:2 (2010), 401–426 | DOI | MR | Zbl
[4] Kiyohara K., “Compact Liouville surfaces”, J. Math. Soc. Japan, 43 (1991), 555–591 | DOI | MR | Zbl
[5] Levi-Civita T., “Sulle trasformazioni delle equazioni dinamiche”, Ann. Mat. Pura Appl., 24:1 (1896), 255–300 | DOI | MR | Zbl
[6] Matveev V. S., “Three-dimensional manifolds having metrics with the same geodesics”, Topology, 42:6 (2003), 1371–1395 | DOI | MR | Zbl
[7] Matveev V. S., “Beltrami problem, Lichnerowicz–Obata conjecture and applications of integrable systems in differential geometry”, Tr. Semin. Vektorn. Tenzorn. Anal., 26, 2005, 214–238
[8] Matveev V. S., “On degree of mobility for complete metrics”, Adv. Stud. Pure Math., 43 (2006), 221–250 | MR | Zbl
[9] Matveev V. S., “Proof of projective Lichnerowicz–Obata conjecture”, J. Differ. Geom., 75 (2007), 459–502 | MR | Zbl
[10] Matveev V. S., Mounoud P., “Gallot–Tanno theorem for closed incomplete pseudo-Riemannian manifolds and applications”, Ann. Glob. Anal. Geom., 38 (2010), 259–271 | DOI | MR | Zbl
[11] Zeghib A., On discrete projective transformation groups of Riemannian manifolds, arXiv: 1304.6812v1