On the number of nontrivial projective transformations of closed manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 125-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for a closed Riemannian manifold the quotient of the group of projective transformations by the group of isometries contains at most two elements unless the metric has constant positive sectional curvature or every projective transformation is an affine transformation.
@article{FPM_2015_20_2_a8,
     author = {V. S. Matveev},
     title = {On the number of nontrivial projective transformations of closed manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {125--131},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a8/}
}
TY  - JOUR
AU  - V. S. Matveev
TI  - On the number of nontrivial projective transformations of closed manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 125
EP  - 131
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a8/
LA  - ru
ID  - FPM_2015_20_2_a8
ER  - 
%0 Journal Article
%A V. S. Matveev
%T On the number of nontrivial projective transformations of closed manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 125-131
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a8/
%G ru
%F FPM_2015_20_2_a8
V. S. Matveev. On the number of nontrivial projective transformations of closed manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 125-131. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a8/

[1] Calderbank D., Eastwood M., Matveev V. S., Neusser K., C-projective geometry: background and open problems, In preparation

[2] Eastwood M., Matveev V. S., “Metric connections in projective differential geometry”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2007, 339–351 | DOI | MR

[3] Kiosak V., Matveev V. S., “Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two”, Comm. Math. Phys., 297:2 (2010), 401–426 | DOI | MR | Zbl

[4] Kiyohara K., “Compact Liouville surfaces”, J. Math. Soc. Japan, 43 (1991), 555–591 | DOI | MR | Zbl

[5] Levi-Civita T., “Sulle trasformazioni delle equazioni dinamiche”, Ann. Mat. Pura Appl., 24:1 (1896), 255–300 | DOI | MR | Zbl

[6] Matveev V. S., “Three-dimensional manifolds having metrics with the same geodesics”, Topology, 42:6 (2003), 1371–1395 | DOI | MR | Zbl

[7] Matveev V. S., “Beltrami problem, Lichnerowicz–Obata conjecture and applications of integrable systems in differential geometry”, Tr. Semin. Vektorn. Tenzorn. Anal., 26, 2005, 214–238

[8] Matveev V. S., “On degree of mobility for complete metrics”, Adv. Stud. Pure Math., 43 (2006), 221–250 | MR | Zbl

[9] Matveev V. S., “Proof of projective Lichnerowicz–Obata conjecture”, J. Differ. Geom., 75 (2007), 459–502 | MR | Zbl

[10] Matveev V. S., Mounoud P., “Gallot–Tanno theorem for closed incomplete pseudo-Riemannian manifolds and applications”, Ann. Glob. Anal. Geom., 38 (2010), 259–271 | DOI | MR | Zbl

[11] Zeghib A., On discrete projective transformation groups of Riemannian manifolds, arXiv: 1304.6812v1