Base normal inductive dimension~$\mathrm I$ of cubes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 113-124
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that $\{1,\infty\}$ is the set of possible base normal inductive dimensions $\mathrm I$ of the segment $I=[0,1]$ and $\{n,n+1,\dots,\infty\}$ is the set of possible base normal inductive dimensions $\mathrm I$ of the $n$-dimensional cubes $I^n$ for $n\geq2$.
@article{FPM_2015_20_2_a7,
author = {A. V. Karassev and K. L. Kozlov},
title = {Base normal inductive dimension~$\mathrm I$ of cubes},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {113--124},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a7/}
}
A. V. Karassev; K. L. Kozlov. Base normal inductive dimension~$\mathrm I$ of cubes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 113-124. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a7/