Base normal inductive dimension~$\mathrm I$ of cubes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 113-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that $\{1,\infty\}$ is the set of possible base normal inductive dimensions $\mathrm I$ of the segment $I=[0,1]$ and $\{n,n+1,\dots,\infty\}$ is the set of possible base normal inductive dimensions $\mathrm I$ of the $n$-dimensional cubes $I^n$ for $n\geq2$.
@article{FPM_2015_20_2_a7,
     author = {A. V. Karassev and K. L. Kozlov},
     title = {Base normal inductive dimension~$\mathrm I$ of cubes},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {113--124},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a7/}
}
TY  - JOUR
AU  - A. V. Karassev
AU  - K. L. Kozlov
TI  - Base normal inductive dimension~$\mathrm I$ of cubes
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 113
EP  - 124
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a7/
LA  - ru
ID  - FPM_2015_20_2_a7
ER  - 
%0 Journal Article
%A A. V. Karassev
%A K. L. Kozlov
%T Base normal inductive dimension~$\mathrm I$ of cubes
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 113-124
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a7/
%G ru
%F FPM_2015_20_2_a7
A. V. Karassev; K. L. Kozlov. Base normal inductive dimension~$\mathrm I$ of cubes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 113-124. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a7/

[1] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[2] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR

[3] Georgiu D., Iliadis S., Kozlov K. L., “Induktivnaya razmernost prostranstva po normalnoi baze”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 3, 7–14 | MR

[4] Kuratovskii K., Topologiya, v. II, Mir, M., 1969 | MR

[5] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[6] Chatyrko V. A., Iliadis S. D., Kozlov K. L., “On the base dimension $\mathrm I$ for (compact) spaces”, Questions Answers in Gen. Topology, 28:2 (2010), 173–185 | MR | Zbl

[7] Engelking R., Theory of Dimensions. Finite and Infinite, Sigma Ser. Pure Math., 10, Heldermann, 1995 | MR | Zbl

[8] Georgiou D., Iliadis S., Kozlov K. L., “Covering dimension $\mathrm d$ by a normal base”, Topology Appl., 158:15 (2011), 1990–1996 | DOI | MR | Zbl

[9] Georgiou D., Iliadis S., Kozlov K. L., “The covering dimension invariants”, Topology Appl., 159:9 (2012), 2392–2403 | DOI | MR | Zbl

[10] Hewitt E., “A problem of set-theoretic topology”, Duke Math. J., 10 (1943), 309–333 | DOI | MR | Zbl

[11] Iliadis S. D., Universal Spaces and Mappings, North-Holland Math. Stud., 198, Elsevier, Amsterdam, 2005 | MR | Zbl

[12] Karassev A., Kozlov K. L., “Computation of inductive dimensions of product of compacta”, Topology Appl., 179 (2015), 131–148 | DOI | MR