On embeddings of topological groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 105-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the existence of universal elements in the class of all topological groups of weight $\leq\tau\neq\omega$ remains open. In this paper, it is proved that for many classes of topological groups there are so-called continuously containing spaces. Let $\mathbb S$ be a saturated class of completely regular spaces of weight $\leq\tau$ and $\mathbb G$ be the subclass of elements of $\mathbb S$ that are topological groups. Then there exists an element $\mathrm T\in\mathbb S$ having the following property: for every $G\in\mathbb T$, there exists a homeomorphism $h^G_\mathrm T$ of $G$ into $\mathrm T$ such that if the points $x,y$ of $\mathrm T$ belong to the set $h^H_\mathrm T(H)$ for some $H\in\mathbb G$, then for every open neighbourhood $U$ of $xy$ in $\mathrm T$ there are open neighbourhoods $V$ and $W$ of $x$ and $y$ in $\mathrm T$, respectively, such that for every $G\in\mathbb G$ we have $$ \left(V\cap h^G_\mathrm T(G)\right)\left(W\cap h^G_\mathrm T(G)\right)^{-1}\subset U\cap h^G_\mathrm T(G). $$ In this case, we say that $\mathrm T$ is a continuously containing space for the class $\mathbb G$. We recall that as the class $\mathbb S$ we can consider, for example, the following classes of completely regular spaces: $n$-dimensional spaces, countable-dimensional spaces, strongly countable-dimensional spaces, locally finite-dimensional spaces. Therefore, in all these classes there are elements that are continuously containing spaces for the corresponding subclasses consisting of topological groups. In this paper, some open problems are considered.
@article{FPM_2015_20_2_a6,
     author = {S. Iliadis},
     title = {On embeddings of topological groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a6/}
}
TY  - JOUR
AU  - S. Iliadis
TI  - On embeddings of topological groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 105
EP  - 112
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a6/
LA  - ru
ID  - FPM_2015_20_2_a6
ER  - 
%0 Journal Article
%A S. Iliadis
%T On embeddings of topological groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 105-112
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a6/
%G ru
%F FPM_2015_20_2_a6
S. Iliadis. On embeddings of topological groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 105-112. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a6/

[1] Uspenskii V. V., “Universalnaya topologicheskaya gruppa so schëtnoi bazoi”, Funkts. analiz i ego pril., 20:2 (1986), 86–87 | MR | Zbl

[2] Shkarin S. A., “Ob universalnykh abelevykh topologicheskikh gruppakh”, Matem. sb., 190:7 (1999), 127–144 | DOI | MR | Zbl

[3] Iliadis S. D., Universal Spaces and Mappings, North-Holland Math. Stud., 198, Elsevier Science, Amsterdam, 2005 | MR | Zbl

[4] Uspenskij V. V., “On the group of isometries of the Urysohn universal metric space”, Comment. Math. Univ. Carolin., 31:1 (1990), 181–182 | MR | Zbl