Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_2_a5, author = {A. O. Ivanov and A. A. Tuzhilin}, title = {Minimal spanning trees on infinite sets}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {89--103}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a5/} }
A. O. Ivanov; A. A. Tuzhilin. Minimal spanning trees on infinite sets. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 89-103. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a5/
[1] Ivanov A. O., Nikonov I. M., Tuzhilin A. A., “Mnozhestva, dopuskayuschie soedinenie grafami konechnoi dliny”, Mat. sb., 196:6 (2005), 71–110 | DOI | MR | Zbl
[2] Aldous D., Steele J. M., “Asymptotics for Euclidean minimal spanning trees on random points”, Probab. Theory Relat. Fields, 92 (1992), 247–258 | DOI | MR | Zbl
[3] Alexander K. S., “Percolation and minimal spanning forests in infinite graphs”, Ann. Probab., 23:1 (1995), 87–104 | DOI | MR | Zbl
[4] Borůvka O., “O jistém problému minimálním”, Práce Mor. Prírodoved. Spol. v Brne (Acta Soc. Sci. Nat. Moravicae), 3 (1926), 37–58 | Zbl
[5] Ivanov A., Tuzhilin A., “The Steiner ratio Gilbert–Pollak conjecture is still open”, Algorithmica, 62:1–2 (2012), 630–632 | DOI | MR | Zbl
[6] Preparata F. P., Shamos M. I., Computational Geometry, an Introduction, Springer, Berlin, 1985 | MR | Zbl
[7] Shamos M. I., Computational Geometry, Ph. D. Thesis, Yale Univ., 1978
[8] Smith W. D., Smith J. M., “On the Steiner ratio in $3$-space”, J. Combin. Theory A, 65 (1995), 301–322 | DOI | MR