The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a~certain optimal control problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 65-87

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier a topological characteristic of the degree type for multivalued perturbations of Fredholm mappings with zero index was constructed and it was assumed that the multivalued perturbation permits a single-valued approximation. In this paper, similar characteristic is constructed for multivalued perturbations of Fredholm mappings of positive index and its application is given to the problem of the existence of an optimal solution for the boundary-value problem in the theory of ordinary differential equations with feedback.
@article{FPM_2015_20_2_a4,
     author = {V. G. Zvyagin},
     title = {The degree of compact multivalued perturbations of {Fredholm} mappings of positive index and its application to a~certain optimal control problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {65--87},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a4/}
}
TY  - JOUR
AU  - V. G. Zvyagin
TI  - The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a~certain optimal control problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 65
EP  - 87
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a4/
LA  - ru
ID  - FPM_2015_20_2_a4
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%T The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a~certain optimal control problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 65-87
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a4/
%G ru
%F FPM_2015_20_2_a4
V. G. Zvyagin. The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a~certain optimal control problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 65-87. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a4/