The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a~certain optimal control problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 65-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier a topological characteristic of the degree type for multivalued perturbations of Fredholm mappings with zero index was constructed and it was assumed that the multivalued perturbation permits a single-valued approximation. In this paper, similar characteristic is constructed for multivalued perturbations of Fredholm mappings of positive index and its application is given to the problem of the existence of an optimal solution for the boundary-value problem in the theory of ordinary differential equations with feedback.
@article{FPM_2015_20_2_a4,
     author = {V. G. Zvyagin},
     title = {The degree of compact multivalued perturbations of {Fredholm} mappings of positive index and its application to a~certain optimal control problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {65--87},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a4/}
}
TY  - JOUR
AU  - V. G. Zvyagin
TI  - The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a~certain optimal control problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 65
EP  - 87
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a4/
LA  - ru
ID  - FPM_2015_20_2_a4
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%T The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a~certain optimal control problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 65-87
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a4/
%G ru
%F FPM_2015_20_2_a4
V. G. Zvyagin. The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a~certain optimal control problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 65-87. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a4/

[1] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005 | MR

[2] Dmitrienko V. T., “K voprosu sobstvennosti odnogo klassa differentsialnykh operatorov”, Uravneniya na mnogoobraziyakh. Novoe v globalnom analize, Voronezhskii un-t, Voronezh, 1982, 105–108 | MR

[3] Zvyagin A. V., “Zadacha optimalnogo upravleniya s obratnoi svyazyu dlya matematicheskoi modeli dvizheniya slabo kontsentrirovannykh vodnykh polimernykh rastvorov s ob'ektivnoi proizvodnoi”, Sib. matem. zhurn., 54:4 (2013), 807–825 | MR | Zbl

[4] Zvyagin V. G., “Ob orientirovannoi stepeni odnogo klassa vozmuschenii fredgolmovykh otobrazhenii i bifurkatsii reshenii nelineinoi kraevoi zadachi s nekompaktnymi vozmuscheniyami”, Matem. sb., 182:12 (1991), 1740–1768 | MR | Zbl

[5] Zvyagin V. G., “Ob orientirovannoi stepeni mnogoznachnykh vozmuschenii fredgolmovykh otobrazhenii polozhitelnogo indeksa”, Dokl. RAN, 457:4 (2014), 388–390 | DOI | MR | Zbl

[6] Zvyagin V. G., Ratiner N. M., “Orientirovannaya stepen fredgolmovykh otobrazhenii. Metod konechnomernoi reduktsii”, SMFN, 44, 2012, 3–171 | MR

[7] Mankrs Dzh., “Elementarnaya differentsialnaya topologiya”: Dzh. Milnor, Dzh. Stashef, Kharakteristicheskie klassy, Mir, M., 1979, 270–359 | MR

[8] Myshkis A. D., “Obobscheniya teoremy o tochke pokoya dinamicheskoi sistemy vnutri zamknutoi traektorii”, Matem. sb., 34(76):3 (1954), 525–540 | MR | Zbl

[9] Shvarts L., Analiz, v. 2, Mir, M., 1972

[10] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Its Appl., 495, Kluwer Academic, Dordrecht, 1999 | MR | Zbl

[11] Górniewicz L., Granas A., Kryszewski W., “On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts”, J. Math. Analysis Appl., 161:2 (1991), 457–473 | DOI | MR | Zbl

[12] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. I, Ergebn. Math. ihrer Grenzgeb., 92, Sequence Spaces, Springer, Berlin, 1977 | MR | Zbl

[13] Obukhovskii V., Zecca P., Zvyagin V., “An oriented index for nonlinear Fredholm inclusions with nonconvex-valued perturbations”, Abstr. Appl. Analysis, 2006 (2006), 1–21 | DOI | MR

[14] Obukhovskii V., Zvyagin V., Zecca P., “On coincidence index for multivalued perturbations of nonlinear Fredholm maps and some applications”, Abstr. Appl. Analysis, 7:6 (2002), 295–322 | DOI | MR | Zbl

[15] Zvyagin V. G., Ratiner N. M., “Oriented degree of Fredholm maps of nonnegative index, and its applications to global bifurcation of solutions”, Global Analysis Studies and Applications, Lect. Notes Math., 1520, Springer, Berlin, 1992, 111–137 | DOI | MR

[16] Zvyagin V., Turbin M., “Optimal feedback control in the mathematical model of low concentrated aqueous polymer solutions”, J. Optim. Theory Appl., 148:1 (2011), 146–163 | DOI | MR | Zbl