Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 51-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe topological properties of the elliptical billiard in the Minkowski plane and geodesic motion on an ellipsoid in the Minkowski space.
@article{FPM_2015_20_2_a3,
     author = {V. Dragovi\'c and M. Radnovi\'c},
     title = {Topological invariants for elliptical billiards and geodesics on ellipsoids in the {Minkowski} space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a3/}
}
TY  - JOUR
AU  - V. Dragović
AU  - M. Radnović
TI  - Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 51
EP  - 64
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a3/
LA  - ru
ID  - FPM_2015_20_2_a3
ER  - 
%0 Journal Article
%A V. Dragović
%A M. Radnović
%T Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 51-64
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a3/
%G ru
%F FPM_2015_20_2_a3
V. Dragović; M. Radnović. Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 51-64. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a3/

[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (2010), 71–132 | DOI | MR | Zbl

[2] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl

[3] Bolsinov A. V., Fomenko A. T., “Geodezicheskii potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tvërdogo tela”, Dokl. RAN, 339:3 (1994), 293–296 | MR | Zbl

[4] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, Udmurtskii univ., Izhevsk, 1999 | MR

[5] Dragovich V., Radnovich M., “Integriruemye billiardy i kvadriki”, UMN, 65:2 (2010), 133–194 | DOI | MR | Zbl

[6] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: metody i prilozheniya, Nauka, M., 1986 | MR

[7] Fokicheva V. V., “Klassifikatsiya billiardnykh dvizhenii v oblastyakh, ogranichennykh sofokusnymi parabolami”, Matem. sb., 205:8 (2014), 139–160 | DOI | MR | Zbl

[8] Fomenko A. T., “Kachestvennaya geometricheskaya teoriya integriruemykh sistem, klassifikatsiya izoenergeticheskikh poverkhnostei i bifurkatsii torov Liuvillya pri kriticheskikh znacheniyakh energii”, Geometriya i teoriya osobennostei v nelineinykh uravneniyakh. Novoe v globalnom analize, Izd-vo Voronezhskogo un-ta, Voronezh, 1987, 118–139 | MR

[9] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl

[10] Birkhoff G., Morris R., “Confocal conics in space-time”, Amer. Math. Month., 69:1 (1962), 1–4 | DOI | MR | Zbl

[11] Bolsinov A. V., Oshemkov A. A., “Singularities of integrable Hamiltonian systems”, Topological Methods in the Theory of Integrable Systems, Cambridge Sci. Publ., Cambridge, 2006, 1–67 | MR | Zbl

[12] Dragović V., Radnović M., “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dynam., 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[13] Dragović V., Radnović M., Poncelet Porisms and Beyond, Birkhäuser, Basel, 2011 | MR | Zbl

[14] Dragović V., Radnović M., “Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics”, Adv. Math., 231 (2012), 1173–1201 | DOI | MR | Zbl

[15] Dragović V., Radnović M., “Minkowski plane, confocal conics, and billiards”, Publ. Inst. Math. (Beograd), 94(108) (2013), 17–30 | DOI | MR | Zbl

[16] Dragović V., Radnović M., “Bicentennial of the Great Poncelet Theorem (1813–2013): Current advances”, Bull. Amer. Math. Soc., 51:3 (2014), 373–445 | DOI | MR | Zbl

[17] Fomenko A. T., “Invariant portrait of Hamiltonian integrable in Liouville sense”, Topology and Geometry – Rohlin Seminar, Lect. Notes Math., 1346, Springer, Berlin, 1988, 57–76 | DOI | MR

[18] Fomenko A. T., “List of all integrable Hamiltonian systems of general type with two degrees of freedom. “Physical zone” in this table”, Integrable and Superintegrable Systems, World Sci., Teaneck, 1990, 134–164 | DOI | MR

[19] Fomenko A. T., “Topological classification of all integrable Hamiltonian differential equations of general type with two degrees of freedom”, The Geometry of Hamiltonian Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 22, Springer, New York, 1991, 131–339 | DOI | MR

[20] Genin D., Khesin B., Tabachnikov S., “Geodesics on an ellipsoid in Minkowski space”, Enseign. Math., 53 (2007), 307–331 | MR | Zbl

[21] Khesin B., Tabachnikov S., “Pseudo-Riemannian geodesics and billiards”, Adv. Math., 221 (2009), 1364–1396 | DOI | MR | Zbl