On the completeness of the Manakov integrals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 35-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this note is to present a simple proof of the completeness of the Manakov integrals for a motion of a rigid body fixed at a point in $\mathbb R^n$, as well as for geodesic flows on a class of homogeneous spaces $\mathrm{SO}(n)/\mathrm{SO}(n_1)\times\dots\times\mathrm{SO}(n_r)$.
@article{FPM_2015_20_2_a2,
     author = {B. Gaji\'c and V. Dragovi\'c and B. Jovanovi\'c},
     title = {On the completeness of the {Manakov} integrals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--49},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a2/}
}
TY  - JOUR
AU  - B. Gajić
AU  - V. Dragović
AU  - B. Jovanović
TI  - On the completeness of the Manakov integrals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 35
EP  - 49
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a2/
LA  - ru
ID  - FPM_2015_20_2_a2
ER  - 
%0 Journal Article
%A B. Gajić
%A V. Dragović
%A B. Jovanović
%T On the completeness of the Manakov integrals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 35-49
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a2/
%G ru
%F FPM_2015_20_2_a2
B. Gajić; V. Dragović; B. Jovanović. On the completeness of the Manakov integrals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 35-49. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a2/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[2] Bolsinov A. V., “Soglasovannye skobki Puassona i polnota semeistv funktsii v involyutsii”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 68–92 | MR | Zbl

[3] Bolsinov A. V., “Polnye involyutivnye nabory polinomov v puassonovykh algebrakh: dokazatelstvo gipotezy Mischenko–Fomenko”, Tr. seminara po vektornomu i tenzornomu analizu, 26, 2005, 87–109 | Zbl

[4] Bolsinov A. V., Iovanovich B., “Integriruemye geodezicheskie potoki na odnorodnykh prostranstvakh”, Matem. sb., 192:7 (2001), 21–40 | DOI | MR | Zbl

[5] Dikii L. A., “Zamechanie o gamiltonovykh sistemakh, svyazannykh s gruppoi vraschenii”, Funkts. analiz i ego pril., 6:4 (1972), 83–84 | MR | Zbl

[6] Dubrovin B. A., “Konechnozonnye lineinye differentsialnye operatory i abelevy mnogoobraziya”, UMN, 31:4 (1976), 259–260 | MR | Zbl

[7] Dubrovin B. A., “Vpolne integriruemye gamiltonovy sistemy, svyazannye s matrichnymi operatorami, i abelevy mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 28–41 | MR | Zbl

[8] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tvërdogo tela”, Funkts. analiz i ego pril., 10:4 (1976), 93–94 | MR | Zbl

[9] Mischenko A. S., “Integraly geodezicheskikh potokov na gruppakh Li”, Funkts. analiz i ego pril., 4:3 (1970), 73–77 | MR | Zbl

[10] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl

[11] Mischenko A. S., Fomenko A. T., “Obobschënnyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego pril., 12:2 (1978), 46– 56 | MR | Zbl

[12] Nekhoroshev N. N., “Peremennye deistvie-ugol i ikh obobscheniya”, Tr. MMO, 26, 1972, 181–198 | MR | Zbl

[13] Sadetov S. T., “Dokazatelstvo gipotezy Mischenko–Fomenko”, Dokl. RAN, 397:6 (2004), 751–754 | MR

[14] Trofimov V. V., Fomenko A. T., Algebra i geometriya integriruemykh gamiltonovykh sistem differentsialnykh uravnenii, Faktorial, M., 1995 | MR

[15] Bolsinov A. V., Jovanović B., “Non-commutative integrability, moment map and geodesic flows”, Ann. Global Anal. Geom., 23:4 (2003), 305–322 | DOI | MR | Zbl

[16] Bolsinov A. V., Jovanović B., “Complete involutive algebras of functions on cotangent bundles of homogeneous spaces”, Math. Z., 246:1–2 (2004), 213–236 | DOI | MR | Zbl

[17] Dragović V., Gajić B., Jovanović B., “Singular Manakov flows and geodesic flows of homogeneous spaces of $\mathrm{SO}(n)$”, Transform. Groups, 14:3 (2009), 513–530 | DOI | MR | Zbl

[18] Dragović V., Gajić B., Jovanović B., “Systems of Hess–Appel'rot type and Zhukovskii property”, Int. J. Geom. Methods Modern Phys., 6:8 (2009), 1253–1304 | DOI | MR | Zbl

[19] Fedorov Yu. N., “Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group $\mathrm{SO}(3)$”, J. Nonlinear Math. Phys., 12, Suppl. 2 (2005), 77–94 | DOI | MR | Zbl

[20] Fedorov Yu. N., Kozlov V. V., “Various aspects of $n$-dimensional rigid body dynamics”, Dynamical Systems in Classical Mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Amer. Math. Soc., Providence, 1995, 141–171 | MR

[21] Frahm F., “Über gewisse Differentialgleichungen”, Math. Ann., 8 (1874), 35–44 | DOI

[22] Jovanović B., “Integrability of invariant geodesic flows on $n$-symmetric spaces”, Ann. Global Anal. Geom., 38 (2010), 305–316 | DOI | MR | Zbl

[23] Jovanović B., “Geodesic flows on Riemannian g.o. spaces”, Regular Chaotic Dynam., 16:5 (2011), 504–513 | DOI | MR | Zbl

[24] Mykytyuk I. V., “Actions of Borel subgroups on homogeneous spaces of reductive complex Lie groups and integrability”, Compositio Math., 127:1 (2001), 55–67 | DOI | MR | Zbl

[25] Mykytyuk I. V., Panasyuk A., “Bi-Poisson structures and integrability of geodesic flows on homogeneous spaces”, Transform. Groups, 9:3 (2004), 289–308 | DOI | MR | Zbl

[26] Mykytyuk I. V., Integrability of geodesic flows for metrics on suborbits of the adjoint orbits of compact groups, arXiv: 1402.6526

[27] Ratiu T., “The motion of the free $n$-dimensional rigid body”, Indiana Univ. Math. J., 29 (1980), 609–629 | DOI | MR | Zbl

[28] Thimm A., “Integrable geodesic flows on homogeneous spaces”, Ergodic Theory Dynam. Systems, 1 (1981), 495–517 | DOI | MR | Zbl