On differential characteristic classes of metrics and connections
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 167-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

A differential characteristic class of a geometric quantity (e.g., Riemannian or Kähler metric, connection, etc.) on a smooth manifold is a closed differential form whose components are expressed in the components of the given geometric quantity and in their partial derivatives in local coordinates via algebraic formulas independent of the choice of coordinates, and whose cohomology class is stable under deformations of the given quantity. In this note, we present a short proof of the theorem of P. Gilkey on characteristic classes of Riemannian metrics, which is based on the method of invariant-theoretic reduction developed by P. I. Katsylo and D. A. Timashev, and generalize this result to Kähler metrics and connections.
@article{FPM_2015_20_2_a11,
     author = {D. A. Timashev},
     title = {On differential characteristic classes of metrics and connections},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {167--183},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a11/}
}
TY  - JOUR
AU  - D. A. Timashev
TI  - On differential characteristic classes of metrics and connections
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 167
EP  - 183
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a11/
LA  - ru
ID  - FPM_2015_20_2_a11
ER  - 
%0 Journal Article
%A D. A. Timashev
%T On differential characteristic classes of metrics and connections
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 167-183
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a11/
%G ru
%F FPM_2015_20_2_a11
D. A. Timashev. On differential characteristic classes of metrics and connections. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 167-183. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a11/

[1] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., Osnovnye idei i ponyatiya differentsialnoi geometrii, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 28, 1988 | MR | Zbl

[2] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, 1989, 137–309 | MR | Zbl

[3] Katsylo P. I., Timashëv D. A., “Estestvennye differentsialnye operatsii na mnogoobraziyakh: algebraicheskii podkhod”, Matem. sb., 199:10 (2008), 63–86 | DOI | MR | Zbl

[4] Atiyah M., Bott R., Patodi V. K., “On the heat equation and the index theorem”, Invent. Math., 19 (1973), 279–330 | DOI | MR | Zbl

[5] Fulton W., Harris J., Representation Theory: A First Course, Grad. Texts Math., 129, Springer, New York, 1991 | MR | Zbl

[6] Gilkey P. B., “Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds”, Adv. Math., 11 (1973), 311–325 | DOI | MR | Zbl

[7] Gilkey P. B., “Curvature and the eigenvalues of the Laplacian for elliptic complexes”, Adv. Math., 10 (1973), 344–382 | DOI | MR | Zbl

[8] Gilkey P. B., Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, Math. Lect. Ser., 11, Publish or Perish, Wilmington, 1984 | MR | Zbl

[9] Katsylo P. I., “On curvatures of sections of tensor bundles”, Amer. Math. Soc. Transl. (2), 213 (2005), 129–140 | MR | Zbl