Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_2_a10, author = {A. G. Sergeev}, title = {On two geometric problems arising in mathematical physics}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {157--166}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a10/} }
A. G. Sergeev. On two geometric problems arising in mathematical physics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 157-166. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a10/
[1] Domrin A. V., “Analogi vikhrei Ginzburga–Landau”, Teor. i matem. fiz., 124:1 (2000), 18–35 | DOI | MR | Zbl
[2] Kirillov A. A., “Geometricheskoe kvantovanie”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 4, 1985, 141–178 | MR | Zbl
[3] Kirillov A. A., “Kelerova struktura na $K$-orbitakh gruppy diffeomorfizmov okruzhnosti”, Funkts. analiz i ego pril., 21:2 (1987), 42–45 | MR | Zbl
[4] Kirillov A. A., Yurev D. V., “Kelerova geometriya beskonechnomernogo odnorodnogo prostranstva $M=\operatorname{Diff}_+(S^1)/\mathrm{Rot}(S^1)$”, Funkts. analiz i ego pril., 21:4 (1987), 35–46 | MR | Zbl
[5] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, Chast 2, v. 9, Statisticheskaya fizika, Fizmatlit, M., 2000
[6] Palvelev R. V., “Rasseyanie vikhrei v abelevoi modeli Khiggsa”, Teor. i matem. fiz., 156:1 (2008), 77–91 | DOI | MR | Zbl
[7] Palvelev R. V., “Obosnovanie adiabaticheskogo printsipa v abelevoi modeli Khiggsa”, Tr. MMO, 72, 2011, 281–314 | Zbl
[8] Palvelev R. V., Sergeev A. G., “Obosnovanie adiabaticheskogo predela dlya giperbolicheskikh uravnenii Ginzburga–Landau”, Tr. MIAN, 277, 2012, 199–214 | MR | Zbl
[9] Pressli A., Sigal G., Gruppy petel, Mir, M., 1990 | MR
[10] Sergeev A. G., Geometricheskoe kvantovanie prostranstv petel, MIAN, M., 2009
[11] Sergeev A. G., Chechin S. V., “Rasseyanie medlenno dvizhuschikhsya vikhrei v abelevoi $(2+1)$-mernoi modeli Khiggsa”, Teor. i matem. fiz., 85:3 (1990), 397–411 | MR
[12] Bowick M. J., Lahiri A., “The Ricci curvature of $\operatorname{Diff}S^1/\mathrm{SL}(2,\mathbb R)$”, J. Math. Phys., 29 (1988), 1979–1981 | DOI | MR | Zbl
[13] Bowick M. J., Rajeev S. G., “The holomorphic geometry of closed bosonic string theory and $\operatorname{Diff}S^1/S^1$”, Nuclear Phys. B, 293 (1987), 348–384 | DOI | MR
[14] Guillemin V., Sternberg S., Geometric Asymptotics, Amer. Math. Soc., Providence, 1977 | MR | Zbl
[15] Jaffe A., Taubes C. H., Vortices and Monopoles, Birkhäuser, Boston, 1980 | MR | Zbl
[16] Manton N. S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR | Zbl
[17] Morgan J. W., The Seiberg–Witten Equations and Applications to the Topology of Smooth Four- Manifolds, Princeton Univ. Press, Princeton, 1996 | MR | Zbl
[18] Salamon D., Spin geometry and Seiberg–Witten invariants, Preprint, Univ. of Warwick, 1996 | MR
[19] Seiberg N., Witten E., “Electro-magnetic duality, monopole condensation and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nuclear Phys. B, 426 (1994), 19–52 | DOI | MR | Zbl
[20] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric Yang–Mills theory”, Nuclear Phys. B, 426 (1994), 581–640 | DOI | MR
[21] Sergeev A. G., Vortices and Seiberg–Witten Equations, Nagoya Univ., Nagoya, 2002
[22] Sergeev A., Kähler Geometry of Loop Spaces, World Scientific, Singapore, 2010 | MR
[23] Souriau J.-M., Structure des Systémes Dynamiques, Dunod, Paris, 1970 | MR
[24] Sniatycki J., Geometric Quantization and Quantum Mechanics, Springer, Berlin, 1980 | MR | Zbl
[25] Taubes C. H., “Arbitrary $N$-vortex solutions to the first-order Ginzburg–Landau equations”, Comm. Math. Phys., 72 (1980), 277–292 | DOI | MR | Zbl
[26] Taubes C. H., “$\mathrm{SW}\to\mathrm{Gr}$: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl
[27] Taubes C. H., “$\mathrm{Gr}\to\mathrm{SW}$: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Differential Geom., 51 (1999), 203–334 | MR | Zbl
[28] Taubes C. H., “$\mathrm{Gr}=\mathrm{SW}$: Counting curves and connections”, J. Differential Geom., 52 (1999), 453–609 | MR | Zbl
[29] Tuynman G. M., Geometric Quantization, CWI Syllabus, Amsterdam, 1985 | MR | Zbl
[30] Woodhouse N. M. J., Geometric Quantization, Clarendon Press, Oxford, 1992 | MR | Zbl