Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_2_a1, author = {P. V. Bibikov}, title = {On the geometry of quadratic second-order {Abel} ordinary differential equations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {21--34}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a1/} }
TY - JOUR AU - P. V. Bibikov TI - On the geometry of quadratic second-order Abel ordinary differential equations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 21 EP - 34 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a1/ LA - ru ID - FPM_2015_20_2_a1 ER -
P. V. Bibikov. On the geometry of quadratic second-order Abel ordinary differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 21-34. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a1/
[1] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., Osnovnye idei i ponyatiya differentsialnoi geometrii, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 28, VINITI, M., 1988 | MR | Zbl
[2] Dubrov B. M., “Ob odnom klasse kontaktnykh invariantov sistem obyknovennykh differentsialnykh uravnenii”, Izv. vyssh. uchebn. zaved. Matematika, 2006, no. 1, 76–77 | MR | Zbl
[3] Kushner A. G., Klassifikatsiya uravnenii Monzha–Ampera, Dis. $\dots$ dokt. fiz.-mat. nauk, Astrakhan, 2009
[4] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya v chastnykh proizvodnykh vtorogo poryadka”, DAN SSSR, 238:5 (1978), 273–276 | Zbl
[5] Chen W., Li H., “The geometry of the differential equations of the fourth order under the contact transformations”, Acta Sci. Nat. Univ. Pekinensis, 35:3 (1999), 285–296 | MR | Zbl
[6] Chern S., “The geometry of the differential equation $y'''=F(x,y,y',y'')$”, Sci. Rep. Nat. Tsing Hua Univ., 4 (1950), 97–111 | MR
[7] Dubrov B., “Contact trivialization of ordinary differential equations”, Differential Geometry and Its Applications, Proc. Conf. (Opava, August 27–31, 2001), 73–84 | MR | Zbl
[8] Kruglikov B., Point classification of 2nd order ODEs: Tresse classification revisited and beyond, arXiv: 0809.4653 | MR
[9] Kushner A. G., Lychagin V. V., Rubtsov V. N., Contact Geometry and Non-Linear Differential Equations, Cambridge Univ. Press, Cambridge, 2007 | MR
[10] Lie S., “Begründung einer Invarianten-Theorie der Berührungs-Transformationen”, Math. Ann., 8 (1874), 215–303 | DOI | MR
[11] Shurygin V. V. (jr.), “On the contact equivalence problem of second-order ODEs which are quadratic with respect to the second-order derivative”, Lobachevskii J. Math., 34:3 (2013), 264–271 | DOI | MR | Zbl
[12] Sternberg S., Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, 1964 | MR | Zbl
[13] Tresse A., Détermination des invariants ponctuels de l' équation différentielle ordinaire du second ordre $y''=\omega(x,y,y')$, Leipzig, 1896
[14] Yumaguzhin V., Differential invariants of 2-order ODEs. I, arXiv: 0804.0674v1