Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_1_a6, author = {A. V. Gribov}, title = {Some homomorphic cryptosystems based on nonassociative structures}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {135--143}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a6/} }
A. V. Gribov. Some homomorphic cryptosystems based on nonassociative structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 135-143. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a6/
[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR
[2] Gribov A. V., Zolotykh P. A., Mikhalëv A. V., “Postroenie algebraicheskoi kriptosistemy nad kvazigruppovym koltsom”, Matem. voprosy kriptografii, 1:4 (2010), 23–32
[3] Katyshev S. Yu., Markov V. T., Nechaev A. A., “Ispolzovanie neassotsiativnykh gruppoidov dlya realizatsii protsedury otkrytogo raspredeleniya klyuchei”, Diskret. matem., 26:3 (2014), 45–64 | DOI | MR
[4] Rososhek S. K., “Kriptosistemy gruppovykh kolets”, Vestn. Tomsk. gos. un-ta, 2003, no. 6, 57–62
[5] Bruck R., A Survey of Binary Systems, Springer, Berlin, 1958 | MR | Zbl
[6] Dijk M., Gentry C., Halevi S., Vaikuntanathan V., “Fully homomorphic encryption over the integers”, Advances in Cryptology EUROCRYPT 2010, Lect. Notes Comput. Sci., 6110, Springer, Berlin, 2010, 24–43 | DOI | MR | Zbl
[7] ElGamal T., “A public-key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans. Inform. Theory, 31:4 (1985), 469–472 | DOI | MR | Zbl
[8] Gentry C., A Fully Homomorphic Encryption Scheme, Ph. D. Thesis, Stanford Univ., 2009
[9] Smith J. D. H., Representation Theory of Infinite Groups and Finite Quasigroups, Univ. Montreal, Montreal, 1986 | MR | Zbl
[10] Toyoda K., “On axioms of linear functions”, Proc. Imp. Acad. Tokyo, 17 (1941), 221–227 | DOI | MR | Zbl