Some homomorphic cryptosystems based on nonassociative structures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 135-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

A homomorphic encryption allows specific types of computations on ciphertext and generates an encrypted result that matches the result of operations performed on the plaintext. Some classic cryptosystems, e.g., RSA and ElGamal, allow homomorphic computation of only one operation. In 2009, C. Gentry suggested a model of a fully homomorphic algebraic system, i.e., a cryptosystem that supports both addition and multiplication operations. This cryptosystem is based on lattices. Later M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan suggested a fully homomorphic system based on integers. In a 2010 paper of A. V. Gribov, P. A. Zolotykh, and A. V. Mikhalev, a cryptosystem based on a quasigroup ring was constructed, developing an approach of S. K. Rososhek, and a homomorphic property of this system was investigated. An example of a quasigroup for which this system is homomorphic is given. Also a homomorphic property of the ElGamal cryptosystem based on a medial quasigroup is shown.
@article{FPM_2015_20_1_a6,
     author = {A. V. Gribov},
     title = {Some homomorphic cryptosystems based on nonassociative structures},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--143},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a6/}
}
TY  - JOUR
AU  - A. V. Gribov
TI  - Some homomorphic cryptosystems based on nonassociative structures
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 135
EP  - 143
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a6/
LA  - ru
ID  - FPM_2015_20_1_a6
ER  - 
%0 Journal Article
%A A. V. Gribov
%T Some homomorphic cryptosystems based on nonassociative structures
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 135-143
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a6/
%G ru
%F FPM_2015_20_1_a6
A. V. Gribov. Some homomorphic cryptosystems based on nonassociative structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 135-143. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a6/

[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR

[2] Gribov A. V., Zolotykh P. A., Mikhalëv A. V., “Postroenie algebraicheskoi kriptosistemy nad kvazigruppovym koltsom”, Matem. voprosy kriptografii, 1:4 (2010), 23–32

[3] Katyshev S. Yu., Markov V. T., Nechaev A. A., “Ispolzovanie neassotsiativnykh gruppoidov dlya realizatsii protsedury otkrytogo raspredeleniya klyuchei”, Diskret. matem., 26:3 (2014), 45–64 | DOI | MR

[4] Rososhek S. K., “Kriptosistemy gruppovykh kolets”, Vestn. Tomsk. gos. un-ta, 2003, no. 6, 57–62

[5] Bruck R., A Survey of Binary Systems, Springer, Berlin, 1958 | MR | Zbl

[6] Dijk M., Gentry C., Halevi S., Vaikuntanathan V., “Fully homomorphic encryption over the integers”, Advances in Cryptology EUROCRYPT 2010, Lect. Notes Comput. Sci., 6110, Springer, Berlin, 2010, 24–43 | DOI | MR | Zbl

[7] ElGamal T., “A public-key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans. Inform. Theory, 31:4 (1985), 469–472 | DOI | MR | Zbl

[8] Gentry C., A Fully Homomorphic Encryption Scheme, Ph. D. Thesis, Stanford Univ., 2009

[9] Smith J. D. H., Representation Theory of Infinite Groups and Finite Quasigroups, Univ. Montreal, Montreal, 1986 | MR | Zbl

[10] Toyoda K., “On axioms of linear functions”, Proc. Imp. Acad. Tokyo, 17 (1941), 221–227 | DOI | MR | Zbl