Experimental study of the hypothesis on the order of a~random element of the matrix modular group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 231-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

The hypothesis on the order of a random element of the matrix modular group is formulated as follows: a random element of a matrix group over the ring of residues modulo $n$ with high probability has order greater than or equal to the value of the Euler function of $n$. If this hypothesis is correct, then it will be possible to significantly speed up the generation of the keys in the matrix modular cryptosystems, which will improve both efficiency and security of these cryptosystems. Experiments were carried out in five matrix modular groups by the scheme of the same type: first, a large sample of random elements of the group was formed, and then the orders of the elements of the sample were computed. Experimental results show that for all considered groups the orders of random elements satisfy the same probability distribution. Moreover, the probability that a random element of the group has “large order” (i.e., the order is greater than or equal to the value of the Euler function of $n$) was approximately the same in all considered groups, namely, about $0.85$.
@article{FPM_2015_20_1_a12,
     author = {S. K. Rososhek and E. S. Gorbunov},
     title = {Experimental study of the hypothesis on the order of a~random element of the matrix modular group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {231--239},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a12/}
}
TY  - JOUR
AU  - S. K. Rososhek
AU  - E. S. Gorbunov
TI  - Experimental study of the hypothesis on the order of a~random element of the matrix modular group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 231
EP  - 239
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a12/
LA  - ru
ID  - FPM_2015_20_1_a12
ER  - 
%0 Journal Article
%A S. K. Rososhek
%A E. S. Gorbunov
%T Experimental study of the hypothesis on the order of a~random element of the matrix modular group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 231-239
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a12/
%G ru
%F FPM_2015_20_1_a12
S. K. Rososhek; E. S. Gorbunov. Experimental study of the hypothesis on the order of a~random element of the matrix modular group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 231-239. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a12/

[1] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1977 | MR

[2] V. A. Sadovnichii (gl. red.), Kvantovyi kompyuter i kvantovye vychisleniya, Sb. nauch. tr. v 2-kh tt., v. 1, Izhevsk, 1999

[3] Menezes A., van Ooshot P., Vanstone S., Handbook of Applied Cryptography, CRC Press, 1996

[4] Rososhek S. K., “New practical algebraic public key cryptosystem and some related algebraic and computational aspects”, Applied Math., 4:7 (2013), 1043–1049 | DOI

[5] Rososhek S. K., Gorbunov E. S., “Noncommutative analogue of Diffie–Hellman protocol in matrix ring over the residue ring”, Int. J. Computers Technology, 11:10 (2013), 3051–3059