Cryptographic algorithms on groups and algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 205-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze algorithms for open construction of a key on some noncommutative group. Algorithms of factorization and decomposition for associative algebras (of small dimension) are considered. A survey of applications (in particular, in cryptography) of so-called “hidden matrices” is given.
@article{FPM_2015_20_1_a10,
     author = {A. S. Kuzmin and V. T. Markov and A. A. Mikhalev and A. V. Mikhalev and A. A. Nechaev},
     title = {Cryptographic algorithms on groups and algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--222},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a10/}
}
TY  - JOUR
AU  - A. S. Kuzmin
AU  - V. T. Markov
AU  - A. A. Mikhalev
AU  - A. V. Mikhalev
AU  - A. A. Nechaev
TI  - Cryptographic algorithms on groups and algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 205
EP  - 222
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a10/
LA  - ru
ID  - FPM_2015_20_1_a10
ER  - 
%0 Journal Article
%A A. S. Kuzmin
%A V. T. Markov
%A A. A. Mikhalev
%A A. V. Mikhalev
%A A. A. Nechaev
%T Cryptographic algorithms on groups and algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 205-222
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a10/
%G ru
%F FPM_2015_20_1_a10
A. S. Kuzmin; V. T. Markov; A. A. Mikhalev; A. V. Mikhalev; A. A. Nechaev. Cryptographic algorithms on groups and algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 205-222. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a10/

[1] Alfërov A. P., Zubov A. Yu., Kuzmin A. S., Cherëmushkin A. V., Osnovy kriptografii, Gelios ARV, M., 2002

[2] Balaba I. N., Mikhalëv A. V., “Izomorfizmy graduirovannykh kolets endomorfizmov graduirovannykh modulei, blizkikh k svobodnym”, Fundament. i prikl. matem., 13:5 (2007), 3–18 | MR | Zbl

[3] Balaba I. N., Mikhalëv A. V., “Antiizomorfizmy graduirovannykh kolets endomorfizmov graduirovannykh modulei, blizkikh k svobodnym”, Fundament. i prikl. matem., 14:7 (2008), 23–36 | MR

[4] Beidar K. I., Mikhalëv A. V., “Antiizomorfizmy kolets endomorfizmov modulei i antiekvivalentnosti Mority”, UMN, 50:1 (1995), 187–188 | MR | Zbl

[5] Beidar K. I., Mikhalëv A. V., “Antiizomorfizmy kolets endomorfizmov modulei, blizkikh k svobodnym, indutsirovannye antiekvivalentnostyami Mority”, Tr. seminara im. I. G. Petrovskogo, 19, 1996, 338–344 | MR | Zbl

[6] Bogdanov I. I., “Skrytye matrichnye polukoltsa”, Fundament. i prikl. matem., 9:3 (2003), 13–19 | MR | Zbl

[7] Venttsel E. S., Teoriya veroyatnostei, Nauka, M., 1969 | MR

[8] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. II, Gelios ARV, M., 2003

[9] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988

[10] Mikhalëv A. V., “Izomorfizmy kolets endomorfizmov modulei, blizkikh k svobodnym”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 2, 20–27 | MR | Zbl

[11] Novikov M. I., Raspoznavanie supermatrits, Kursovaya rabota studenta 4-go kursa mekhaniko-matematicheskogo fakulteta MGU, nauchnyi rukovoditel: prof. A. V. Mikhalëv, M., 2009

[12] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR

[13] Agnarson G., Amitsur S. A., Robson J. C., “Recognition of matrix rings. II”, Israel J. Math., 96 (1966), 1–13 | DOI | MR

[14] Bolla M. L., “Isomorphisms between endomorphism rings of progenerators”, J. Algebra, 87 (1984), 261–281 | DOI | MR | Zbl

[15] Bremmer M. R., “How to compute the Wedderburn decomposition of a finite-dimensional associative algebra”, Groups, Complexity, Cryptology, 3 (2011), 47–66 | MR

[16] Camillo V. P., “Inducing lattice maps by semilinear isomorphisms”, Rocky Mountain J. Math., 14 (1984), 475–486 | DOI | MR

[17] Chatters A. W., “Representations of tiled matrix rings as full matrix rings”, Math. Proc. Cambridge Phil. Soc., 105 (1989), 67–72 | DOI | MR | Zbl

[18] Chatters A. W., “Matrices, idealizers, and integer quaternions”, J. Algebra, 150 (1992), 45–56 | DOI | MR | Zbl

[19] Chatters A. W., “Non-isomorphic rings with isomorphic matrix rings”, Proc. Edinburgh Math. Soc., 36 (1993), 339–348 | DOI | MR | Zbl

[20] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Trans. Inf. Theory, IT-22:6 (1976), 644–654 | DOI | MR | Zbl

[21] Eberly W., “Decompositions of algebras over finite fields and number fields”, Comput. Complexity, 1 (1991), 183–210 | DOI | MR | Zbl

[22] Eberly W., “Decompositions of algebras over $R$ and $C$”, Comput. Complexity, 1 (1991), 214–234 | MR

[23] Eberly W., Giesbrecht M., “Efficient decomposition of associative algebras over finite fields”, J. Symbolic Comput., 29 (2000), 441–458 | DOI | MR | Zbl

[24] Eberly W., Giesbrecht M., “Efficient decomposition of separable algebras”, J. Symbolic Comput., 37 (2004), 35–81 | DOI | MR | Zbl

[25] Eberly W., Giesbrecht M., “Efficient decomposition of associative algebras”, Proc. ISSAC' 96, ACM, New York, 1996, 170–178 | DOI | Zbl

[26] Friede K., Ronyai L., “Polynomial time solutions of some problems in computational algebra”, Proc. 17th Ann. ACM Symp. Theory Comp., ACM, New York, 1985, 153–162

[27] Fuchs P. R., “A characterization result for matrix rings”, Bull. Austral. Math. Soc., 43 (1991), 265–267 | DOI | MR | Zbl

[28] Fuchs P. R., Maxson C. J., Pilz G. F., “On rings for which homogeneous maps are linear”, Proc. Amer. Math. Soc., 112 (1991), 1–7 | DOI | MR | Zbl

[29] Imai H., Matsumoto T., “Algebraic methods for constructing asymmetric cryptosystems”, Proc. of the 3rd Int. Conf. on Algebraic Algorithms and Error-Correcting Codes, Lect. Notes Comput. Sci., 229, Springer, Berlin, 1985, 108–119 | DOI | MR

[30] Lam T. Y., Modules with Isomorphic Multiples and Rings with Isomorphic Matrix Rings. A Survey, L'Enseignement Mathématique, 35, Kundig, 1999 | MR

[31] Lam T. Y., Leroy A., “Recognition amd computations of matrix rings”, Israel J. Math., 96 (1996), 379–397 | DOI | MR | Zbl

[32] Levy I. S., Robson J. S., Stafford T., “Hidden matrices”, Proc. London Math. Soc. (2), 69 (1994), 277–308 | DOI | MR | Zbl

[33] Mikhalev A. V., “Isomorphisms and antiisomorphisms of endomorphism rings of modules”, First Int. Tainan–Moscow Algebra Workshop, Walter de Gruyter, Berlin, 1996, 70–122 | MR

[34] Moldovyan N. A., Moldovyan D. N., “A new hard problem over non-commutative finite groups for cryptographic protocols”, Computer Network Security, Proc. 5th Int. Conf. MMM-ACNS 2010, Lect. Notes Comput. Sci., 6258, Springer, Berlin, 2010, 183–194 | DOI

[35] Nechaev A. A., “Finite rings with applications”, Handbook of Algebra, v. 5, ed. M. Hazewinkel, Elsevier, 2008, 213–320 | DOI | MR | Zbl

[36] Von Neumann J., Continuous Geometry, Princeton Univ. Press, 1960 | MR | Zbl

[37] Patarin J., Goubin L., Courtois N., “$C_{-+}^*$ and HM: Variations around two schemes of T. Matsumoto and H. Imai”, Advances in Cryptology – ASIACRYPT' 98, Lect. Notes Comput. Sci., 1514, Springer, Berlin, 1998, 35–50 | DOI

[38] Robson J. C., “Recognition of matrix rings”, Commun. Algebra, 19 (1991), 2113–2124 | DOI | MR | Zbl

[39] Ronyai L., Proc. 19th Ann. ACM Symp. Theory Comp., ACM, New York, 1987

[40] Ronyai L., “Computing the structure of finite algebras”, J. Symbolic Comput., 9 (1990), 355–373 | DOI | MR | Zbl

[41] Stephenson W., “Lattice isomorphisms between modules. I. Endomorphism rings”, J. London Math. Soc. (2), 1 (1969), 177–183 | DOI | MR | Zbl

[42] Wu Z., Ding J., Gower J. E., Ye D., “Perturbed hidden matrix cryptosystems”, Computational Science and Its Applications – ICCSA 2005, Lect. Notes Comput. Sci., 3481, Springer, Berlin, 2005, 595–602 | DOI