Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_1_a1, author = {A. V. Galatenko and A. A. Nechaev and A. E. Pankrat'ev}, title = {Comparing finite {Abelian} groups from the standpoint of their cryptographic applications}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {9--16}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a1/} }
TY - JOUR AU - A. V. Galatenko AU - A. A. Nechaev AU - A. E. Pankrat'ev TI - Comparing finite Abelian groups from the standpoint of their cryptographic applications JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 9 EP - 16 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a1/ LA - ru ID - FPM_2015_20_1_a1 ER -
%0 Journal Article %A A. V. Galatenko %A A. A. Nechaev %A A. E. Pankrat'ev %T Comparing finite Abelian groups from the standpoint of their cryptographic applications %J Fundamentalʹnaâ i prikladnaâ matematika %D 2015 %P 9-16 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a1/ %G ru %F FPM_2015_20_1_a1
A. V. Galatenko; A. A. Nechaev; A. E. Pankrat'ev. Comparing finite Abelian groups from the standpoint of their cryptographic applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 9-16. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a1/
[1] Glukhov M. M., “O $2$-tranzitivnykh proizvedeniyakh regulyarnykh grupp podstanovok”, Tr. po diskr. matem., 3, 2000, 37–52
[2] Fisher R. A., Yates F., Statistical Tables for Biological, Agricultural and Medical Research, Oliver Boyd, London, 1948, 26–27 | MR
[3] Knuth D. E., The Art of Computer Programming, v. 2, Seminumerical Algorithms, Addison-Wesley, Reading, MA, 1969, 124–125 | MR