Comparing finite Abelian groups from the standpoint of their cryptographic applications
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 9-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work presents the results of an experimental study of some properties of low-order finite Abelian groups from the standpoint of the applicability of such groups in cryptographic applications.
@article{FPM_2015_20_1_a1,
     author = {A. V. Galatenko and A. A. Nechaev and A. E. Pankrat'ev},
     title = {Comparing finite {Abelian} groups from the standpoint of their cryptographic applications},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {9--16},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a1/}
}
TY  - JOUR
AU  - A. V. Galatenko
AU  - A. A. Nechaev
AU  - A. E. Pankrat'ev
TI  - Comparing finite Abelian groups from the standpoint of their cryptographic applications
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 9
EP  - 16
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a1/
LA  - ru
ID  - FPM_2015_20_1_a1
ER  - 
%0 Journal Article
%A A. V. Galatenko
%A A. A. Nechaev
%A A. E. Pankrat'ev
%T Comparing finite Abelian groups from the standpoint of their cryptographic applications
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 9-16
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a1/
%G ru
%F FPM_2015_20_1_a1
A. V. Galatenko; A. A. Nechaev; A. E. Pankrat'ev. Comparing finite Abelian groups from the standpoint of their cryptographic applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 9-16. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a1/

[1] Glukhov M. M., “O $2$-tranzitivnykh proizvedeniyakh regulyarnykh grupp podstanovok”, Tr. po diskr. matem., 3, 2000, 37–52

[2] Fisher R. A., Yates F., Statistical Tables for Biological, Agricultural and Medical Research, Oliver Boyd, London, 1948, 26–27 | MR

[3] Knuth D. E., The Art of Computer Programming, v. 2, Seminumerical Algorithms, Addison-Wesley, Reading, MA, 1969, 124–125 | MR