A~note on the kernel of group homomorphism from the Weil descent method
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 213-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we demonstrate some properties of the kernel of homomorphism, obtained from the Weil descent attack on the elliptic curves over a field of characteristic $2$, in particular, its nondegeneracy under some conditions.
@article{FPM_2014_19_6_a9,
     author = {M. A. Cherepniov},
     title = {A~note on the kernel of group homomorphism from the {Weil} descent method},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {213--224},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a9/}
}
TY  - JOUR
AU  - M. A. Cherepniov
TI  - A~note on the kernel of group homomorphism from the Weil descent method
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 213
EP  - 224
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a9/
LA  - ru
ID  - FPM_2014_19_6_a9
ER  - 
%0 Journal Article
%A M. A. Cherepniov
%T A~note on the kernel of group homomorphism from the Weil descent method
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 213-224
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a9/
%G ru
%F FPM_2014_19_6_a9
M. A. Cherepniov. A~note on the kernel of group homomorphism from the Weil descent method. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 213-224. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a9/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR

[2] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[3] Shevalle K., Vvedenie v teoriyu algebraicheskikh funktsii ot odnoi peremennoi, Fizmatgiz, M., 1959 | MR

[4] Blake I., Seroussi G., Smart N., Elliptic Curves in Cryptography, London Math. Soc. Lect. Note Ser., 265, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[5] Cassels J. W. S., “Diophantine equations with special reference to elliptic curves”, J. London Math. Soc., 41 (1966), 193–291 | DOI | MR

[6] Galbraith S. D., Weil descent of Jacobians, https://www.math.auckland.ac.nz/~sgal018/dec.pdf

[7] Galbraith S. D., Hess F., Smart N. P., “Extending the GHS Weil descent attack”, Advances in Cryptology – EUROCRYPT 2002, Lect. Notes Comp. Sci., 2332, Springer, Berlin, 2002, 29–44 | DOI | MR | Zbl

[8] Galbraith S. D., Smart N. P., “A cryptographic application of Weil descent”, Cryptography and Coding, Proc. 7th IMA Int. Conf. (Cirencester, UK, December 20–22, 1999), Lect. Notes Comp. Sci., 1746, Springer, Berlin, 1999, 191–200 ; The full version of the paper: HP Labs Technical Report HPL-1999-70 | DOI | MR | Zbl

[9] Gaudry P., Hess F., Smart N. P., Constructive and Destructive Facets of Weil Descent on Elliptic Curves, Hewlett Packard Laboratories Technical Report , 2000 http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/papers.html

[10] Karabina K., Menezes A., Pomerance C., Shparlinski I. E., “On the asymptotic effectiveness of Weil descent attacks”, J. Math. Cryptology, 4:2 (2010), 175–191 | DOI | MR | Zbl

[11] Koblitz N., Algebraic Aspects of Cryptography, Springer, Berlin, 1998 | MR | Zbl

[12] Menezes A., Qu M., “Analysis of the Weil descent attack of Gaudry, Hess and Smart”, Topics in Cryptology – CT-RSA 2001, Lect. Notes Comp. Sci., 2020, Springer, Berlin, 2001, 308–318 | DOI | MR | Zbl

[13] Stichtenoth H., Algebraic Function Fields and Codes, Springer, Berlin, 1998 | MR

[14] Weber H., Lehrbuch der Algebra, v. I–III, Chelsea Publ. Comp., New York, 1902