On the lattice of subvarieties of the wreath product the variety of semilattices and the variety of semigroups with zero multiplication
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 191-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the monoid wreath product of any semigroup varieties that are atoms in the lattice of all semigroup varieties mays have a finite as well as an infinite lattice of subvarieties. If this lattice is finite, then as a rule it has at most eleven elements. This was proved in a paper of the author in 2007. The exclusion is the monoid wreath product $\mathbf{Sl}\mathrm w\mathbf N_2$ of the variety of semilattices and the variety of semigroups with zero multiplication. The number of elements of the lattice $L(\mathbf{Sl}\mathrm w\mathbf N_2)$ of subvarieties of $\mathbf{Sl}\mathrm w\mathbf N_2$ is still unknown. In our paper, we show that the lattice $L(\mathbf{Sl}\mathrm w\mathbf N_2)$ contains no less than 33 elements. In addition, we give some exponential upper bound of the cardinality of this lattice.
@article{FPM_2014_19_6_a8,
     author = {A. V. Tishchenko},
     title = {On the lattice of subvarieties of the wreath product the variety of semilattices and the variety of semigroups with zero multiplication},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {191--212},
     year = {2014},
     volume = {19},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a8/}
}
TY  - JOUR
AU  - A. V. Tishchenko
TI  - On the lattice of subvarieties of the wreath product the variety of semilattices and the variety of semigroups with zero multiplication
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 191
EP  - 212
VL  - 19
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a8/
LA  - ru
ID  - FPM_2014_19_6_a8
ER  - 
%0 Journal Article
%A A. V. Tishchenko
%T On the lattice of subvarieties of the wreath product the variety of semilattices and the variety of semigroups with zero multiplication
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 191-212
%V 19
%N 6
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a8/
%G ru
%F FPM_2014_19_6_a8
A. V. Tishchenko. On the lattice of subvarieties of the wreath product the variety of semilattices and the variety of semigroups with zero multiplication. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 191-212. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a8/

[1] M. Arbib (red.), Algebraicheskaya teoriya avtomatov, yazykov i polugrupp, Statistika, M., 1975 | MR

[2] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972

[3] Koshelev Yu. G., “Assotsiativnost umnozheniya mnogoobrazii polugrupp”, Mezhdunar. konf. po algebre, posv. pamyati A. I. Maltseva, Tezisy dokl. po teorii modelei i algebr. sistem, Novosibirsk, 1989, 63

[4] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985 | MR

[5] Maltsev A. I., “Ob umnozhenii klassov algebraicheskikh sistem”, Sib. matem. zhurn., 8:2 (1967), 346–365

[6] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[7] Sapir M. V., “Suschestvenno beskonechno baziruemye konechnye polugruppy”, Matem. sb., 133(175):2 (1987), 154–166 | MR | Zbl

[8] Sapir M. V., Sukhanov E. V., “O mnogoobraziyakh periodicheskikh polugrupp”, Izv. vyssh. uchebn. zaved. Matematika, 1981, no. 4, 48–55 | MR | Zbl

[9] Tischenko A. V., “O razlichnykh opredeleniyakh spleteniya polugruppovykh mnogoobrazii”, Fundament. i prikl. matem., 2:1 (1996), 233–249 | MR | Zbl

[10] Tischenko A. V., “Cpleteniya mnogoobrazii i poluarkhimedovy mnogoobraziya polugrupp”, Trudy MMO, 57, no. 2, 1996, 218–238

[11] Tischenko A. V., “Spletenie atomov reshëtki polugruppovykh mnogoobrazii”, UMN, 53:4 (1998), 219–220 | DOI | MR | Zbl

[12] Tischenko A. V., “Uporyadochennyi monoid polugruppovykh mnogoobrazii otnositelno spleteniya”, Fundament. i prikl. matem., 5:1 (1999), 283–305 | MR | Zbl

[13] Tischenko A. V., “Cpletenie atomov reshëtki polugruppovykh mnogoobrazii”, Trudy MMO, 68, 2007, 107–132

[14] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshëtki mnogoobrazii polugrupp”, Izv. vyssh. uchebn. zaved. Matematika, 2009, no. 3, 3–36 | MR | Zbl

[15] Shevrin L. N., Volkov M. V., “Tozhdestva polugrupp”, Izv. vyssh. uchebn. zaved. Matematika, 1985, no. 11, 3–47 | MR | Zbl

[16] Shevrin L. N., Sukhanov E. V., “Strukturnye aspekty teorii mnogoobrazii polugrupp”, Izv. vyssh. uchebn. zaved. Matematika, 1989, no. 6, 3–39 | MR | Zbl

[17] Eilenberg S., Automata, Languages and Machines, v. B, Academic Press, New York, 1976 | MR | Zbl

[18] Evans T., “The lattice of semigroup varieties”, Semigroup Forum, 2 (1971), 1–43 | DOI | MR | Zbl

[19] Jackson M., “Finite semigroups whose varieties have uncountably many subvarieties”, J. Algebra, 228 (2000), 512–535 | DOI | MR | Zbl

[20] Košelev Ju. G., “Varieties preserved under wreath products”, Semigroup Forum, 12 (1976), 95–107 | DOI | MR

[21] Sapir M. V., “On Cross semigroup varieties and related questions”, Semigroup Forum, 42 (1991), 345–364 | DOI | MR | Zbl

[22] Skornjakov L. A., “Regularity of the wreath product of monoids”, Semigroup Forum, 18:1 (1979), 83–86 | DOI | MR | Zbl

[23] Tilson B., “Categories as algebra: an essential ingredient in the theory of monoids”, J. Pure Appl. Algebra, 48:1–2 (1987), 83–198 | DOI | MR | Zbl