Orthogonal graded completion of modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 141-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction and study of the orthogonal completion functor is an important step in the orthogonal completeness theory developed by K. I. Beidar and A. V. Mikhalev. The research of the graded orthogonal completion begun by the author is continued in this work. We consider associative rings graded by a group and modules over such rings graded by a polygon over the same group. Note that the graduation of a module by a group is a partial case of a more general and natural construction. For any topology $\mathcal F$ of a graded ring $R$ consisting of graded right dense ideals and containing all two-sided graded dense ideals, the functor $O^\mathrm{gr}_\mathcal F$ of the graded orthogonal completion is constructed and studied in this paper. This functor maps the category of right graded $R$-modules into the category of right graded $O^\mathrm{gr}_\mathcal F(R)$-modules. The important feature of the graded case is that the graded modules $Q^\mathrm{gr}_\mathcal F(M)$ and $O^\mathrm{gr}_\mathcal F(M)$ (where $M$ is a right graded $R$-module) may not be orthogonal complete. A criterion for the orthogonal completeness is proved. As a corollary we get that these modules are orthogonal complete in the case of a finite polygon. The properties of the functor $O^\mathrm{gr}_\mathcal F$ and a criterion of its exactness are also established.
@article{FPM_2014_19_6_a6,
     author = {A. L. Kanunnikov},
     title = {Orthogonal graded completion of modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {141--152},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a6/}
}
TY  - JOUR
AU  - A. L. Kanunnikov
TI  - Orthogonal graded completion of modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 141
EP  - 152
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a6/
LA  - ru
ID  - FPM_2014_19_6_a6
ER  - 
%0 Journal Article
%A A. L. Kanunnikov
%T Orthogonal graded completion of modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 141-152
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a6/
%G ru
%F FPM_2014_19_6_a6
A. L. Kanunnikov. Orthogonal graded completion of modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 141-152. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a6/

[1] Balaba I. N., “Koltsa chastnykh polupervichnykh graduirovannykh kolets”, Tr. mezhdunar. sem. “Universalnaya algebra i prilozheniya”, Volgograd, 2000, 21–28

[2] Balaba I. N., Kanunnikov A. L., Mikhalëv A. V., “Graduirovannye koltsa chastnykh assotsiativnykh kolets. I”, Fundament. i prikl. matem., 17:2 (2011/2012), 3–74

[3] Beidar K. I., “Koltsa chastnykh polupervichnykh kolets”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1978, no. 5, 36–43 | MR | Zbl

[4] Beidar K. I., Mikhalëv A. V., “Ortogonalnaya polnota i algebraicheskie sistemy”, UMN, 40:6 (1985), 79–115 | MR | Zbl

[5] Beidar K. I., Mikhalëv A. V., “Funktor ortogonalnogo popolneniya”, Abelevy gruppy i moduli, 4, Izd-vo Tomsk. un-ta, Tomsk, 1986, 3–19

[6] Kanunnikov A. L., “Ortogonalnoe graduirovannoe popolnenie graduirovanno polupervichnykh kolets”, Fundament. i prikl. matem., 17:7 (2011/2012), 117–150 | MR

[7] Mikhalëv A. V., “Ortogonalno polnye mnogosortnye sistemy”, DAN SSSR, 289:6 (1986), 1304–1308 | MR

[8] Beidar K. I., Martindale W. S., Mikhalev A. V., Rings with Generalized Identities, Marcel Dekker, New York, 1995 | MR

[9] Chen-Lian Chuang, “Boolean valued models and semiprime rings”, Rings and Nearrings, Proc. Int. Conf. on Algebra in Memory of Prof. K. I. Beidar, 2005, 23–53 | MR

[10] Nǎstǎsescu C., van Oystaeyen F., Graded Ring Theory, North-Holland, Amsterdam, 1982 | MR

[11] Stenström B., Rings and Modules of Quotients, Lect. Notes Math., 237, Springer, Berlin, 1971 | MR | Zbl