Semiring isomorphisms and automorphims of matrix algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 251-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

The research shows that each matrix semiring isomorphism over an antinegative commutative semiring $R$ with unity is a composition of an inner automorphism and an automorphism inducted by an automorphism of the semiring $R$. It follows that every automorphism of such a matrix semiring that preserves scalars is inner. A matrix over an antinegative commutative semiring $R$ with unity is invertible if and only if it is a product of an invertible diagonal matrix and a matrix consisting of idempotent elements such that the product of its elements of one row (column) is $0$ and their sum is $1$. As a consequence of a theory that was developed for automorphism calculation, the problem of incident semiring isomorphism is solved. Isomorphism of the quasiorders defining these semirings also follows from the isomorphism of incidence semirings over commutative semirings.
@article{FPM_2014_19_6_a11,
     author = {V. D. Shmatkov},
     title = {Semiring isomorphisms and automorphims of matrix algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {251--260},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a11/}
}
TY  - JOUR
AU  - V. D. Shmatkov
TI  - Semiring isomorphisms and automorphims of matrix algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 251
EP  - 260
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a11/
LA  - ru
ID  - FPM_2014_19_6_a11
ER  - 
%0 Journal Article
%A V. D. Shmatkov
%T Semiring isomorphisms and automorphims of matrix algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 251-260
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a11/
%G ru
%F FPM_2014_19_6_a11
V. D. Shmatkov. Semiring isomorphisms and automorphims of matrix algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 251-260. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a11/

[1] Shmatkov V. D., Izomorfizmy i avtomorfizmy kolets i algebr intsidentnosti, Disc. $\dots$ kand. fiz.-mat. nauk, M., 1994

[2] Abrans G., Haefner J., del Río Á., “The isomorphism problem for incidence rings”, Pacific J. Math., 187:2 (1999), 201–214 | DOI | MR

[3] Isaacs I. M., “Automorphisms of matrix algebras over commutative rings”, Linear Algebra Appl., 31 (1980), 215–231 | DOI | MR | Zbl

[4] Spiegel E., O'Donnell C., Incidence Algebras, Pure Appl. Math., 206, Marcel Dekker, 1997 | MR | Zbl

[5] Tan Y., “On invertible matrices over antirings”, Linear Algebra Appl., 423 (2007), 428–444 | DOI | MR | Zbl