Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_6_a10, author = {M. A. Cherepniov and N. L. Zamarashkin}, title = {The universal block {Lanczos--Pad\'e} method for linear systems over large prime fields}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {225--249}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a10/} }
TY - JOUR AU - M. A. Cherepniov AU - N. L. Zamarashkin TI - The universal block Lanczos--Pad\'e method for linear systems over large prime fields JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 225 EP - 249 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a10/ LA - ru ID - FPM_2014_19_6_a10 ER -
%0 Journal Article %A M. A. Cherepniov %A N. L. Zamarashkin %T The universal block Lanczos--Pad\'e method for linear systems over large prime fields %J Fundamentalʹnaâ i prikladnaâ matematika %D 2014 %P 225-249 %V 19 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a10/ %G ru %F FPM_2014_19_6_a10
M. A. Cherepniov; N. L. Zamarashkin. The universal block Lanczos--Pad\'e method for linear systems over large prime fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 225-249. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a10/
[1] Dorofeev A. Ya., “Vychislenie logarifmov v konechnom prostom pole metodom lineinogo resheta”, Tr. po diskr. matem., 5, 2002, 29–50
[2] Dorofeev A. Ya., “Reshenie sistem lineinykh uravnenii pri vychislenii logarifmov v konechnom prostom pole”, Matem. vopr. kriptogr., 3:1 (2012), 5–51
[3] Zamarashkin N. L., Algoritmy dlya razrezhennykh sistem lineinykh uravnenii v $GF(2)$, Uchebnoe posobie, Izd-vo Mosk. un-ta, M., 2013
[4] Popovyan I. A., Nesterenko Yu. V., Grechnikov E. A., Vychislitelno slozhnye zadachi teorii chisel, Uchebnoe posobie, Izd-vo Mosk. un-ta, M., 2012
[5] Cherepnëv M. A., “Blochnyi algoritm tipa Lantsosha reshenii razrezhennykh sistem lineinykh uravnenii”, Diskret. matem., 20:1 (2008), 145–150 | DOI | MR | Zbl
[6] Cherepnev M. A., “Version of block Lanczos-type algorithm for solving sparse linear systems”, Bull. Math. Soc. Sci. Math. Roumanie, 53(101):3 (2010), 225–230 | MR
[7] Coppersmith D., “Solving linear equations over $GF(2)$: Block Lanczos algorithm”, Linear Algebra Appl., 193 (1993), 33–60 | DOI | MR
[8] Gutknecht M. H., “A completed theory of the unsymmetric Lanczos process and related algorithms. I”, SIAM J. Matrix Anal. Appl., 13:2 (1992), 594–639 | DOI | MR | Zbl
[9] Gutknecht M. H., “A completed theory of the unsymmetric Lanczos process and related algorithms. II”, SIAM J. Matrix Anal. Appl., 15:1 (1994), 15–58 | DOI | MR | Zbl
[10] Lanczos C., “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators”, J. Res. Nat. Bur. Standards, 45 (1950), 255–282 | DOI | MR
[11] Montgomery P., “A block Lanczos algorithm for finding dependencies over $GF(2)$”, Advances in Cryptology EUROCRYPT' 95, Lect. Notes Comp. Sci., 921, Springer, Berlin, 1995, 106–120 | DOI | MR | Zbl
[12] Peterson M., Monico C., “$\mathbb F_2$ Lanczos revisited”, Linear Algebra Appl., 428 (2008), 1135–1150 | DOI | MR | Zbl