Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 7-24

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we describe an algebraic point of view on the notion of the solution of a system of algebraic differential equations. We apply Capelli's rank theorem to prime and simple differential algebras.
@article{FPM_2014_19_6_a1,
     author = {O. V. Gerasimova and Yu. P. Razmyslov and G. A. Pogudin},
     title = {Rolling simplexes and their {commensurability.~III} {(Capelli} identities and their application to differential algebras)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {7--24},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/}
}
TY  - JOUR
AU  - O. V. Gerasimova
AU  - Yu. P. Razmyslov
AU  - G. A. Pogudin
TI  - Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 7
EP  - 24
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/
LA  - ru
ID  - FPM_2014_19_6_a1
ER  - 
%0 Journal Article
%A O. V. Gerasimova
%A Yu. P. Razmyslov
%A G. A. Pogudin
%T Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 7-24
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/
%G ru
%F FPM_2014_19_6_a1
O. V. Gerasimova; Yu. P. Razmyslov; G. A. Pogudin. Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras). Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 7-24. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/