Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 7-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we describe an algebraic point of view on the notion of the solution of a system of algebraic differential equations. We apply Capelli's rank theorem to prime and simple differential algebras.
@article{FPM_2014_19_6_a1,
     author = {O. V. Gerasimova and Yu. P. Razmyslov and G. A. Pogudin},
     title = {Rolling simplexes and their {commensurability.~III} {(Capelli} identities and their application to differential algebras)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {7--24},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/}
}
TY  - JOUR
AU  - O. V. Gerasimova
AU  - Yu. P. Razmyslov
AU  - G. A. Pogudin
TI  - Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 7
EP  - 24
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/
LA  - ru
ID  - FPM_2014_19_6_a1
ER  - 
%0 Journal Article
%A O. V. Gerasimova
%A Yu. P. Razmyslov
%A G. A. Pogudin
%T Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 7-24
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/
%G ru
%F FPM_2014_19_6_a1
O. V. Gerasimova; Yu. P. Razmyslov; G. A. Pogudin. Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras). Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 7-24. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/

[1] Kaplanskii I., Vvedenie v differentsialnuyu algebr, IL, M., 1959

[2] Pogudin G. A., “Pervichnye differentsialnye nil-algebry suschestvuyut”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2014, no. 1, 50–53 | MR

[3] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR

[4] Razmyslov Yu. P., “O konechno porozhdënnykh prostykh algebrakh Li, udovletvoryayuschikh standartnomu lievu tozhdestvu stepeni $5$”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1990, no. 3, 37–41 | MR | Zbl

[5] Razmyslov Yu. P., “Raz'yasnenie k “Rolling simplexes and their commensurability” (uravneniya polya po Tikho Brage)”, Fundament. i prikl. matem., 17:4 (2011/2012), 193–215 | MR

[6] Bocher M., Introduction to Higher Algebra, Courier Corp., 1957

[7] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, New York, 1973 | MR | Zbl

[8] Levi H., “On the structure of differential polynomials and their theory of ideals”, Trans. Amer. Math. Soc., 51 (1942), 532–568 | DOI | MR | Zbl

[9] Magid A. R., Lectures on Differential Galois Theory, Univ. Lect. Ser., 7, Amer. Math. Soc., 1994 | MR | Zbl

[10] Zobnin A. I., “One-element differential standard bases with respect to inverse lexicographical orderings”, J. Math. Sci., 163:5 (2009), 523–533 | DOI | MR | Zbl