Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 7-24
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we describe an algebraic point of view on the notion of the solution of a system of algebraic differential equations. We apply Capelli's rank theorem to prime and simple differential algebras.
@article{FPM_2014_19_6_a1,
author = {O. V. Gerasimova and Yu. P. Razmyslov and G. A. Pogudin},
title = {Rolling simplexes and their {commensurability.~III} {(Capelli} identities and their application to differential algebras)},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {7--24},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/}
}
TY - JOUR AU - O. V. Gerasimova AU - Yu. P. Razmyslov AU - G. A. Pogudin TI - Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras) JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 7 EP - 24 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/ LA - ru ID - FPM_2014_19_6_a1 ER -
%0 Journal Article %A O. V. Gerasimova %A Yu. P. Razmyslov %A G. A. Pogudin %T Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras) %J Fundamentalʹnaâ i prikladnaâ matematika %D 2014 %P 7-24 %V 19 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/ %G ru %F FPM_2014_19_6_a1
O. V. Gerasimova; Yu. P. Razmyslov; G. A. Pogudin. Rolling simplexes and their commensurability.~III (Capelli identities and their application to differential algebras). Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 7-24. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a1/