Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_6_a0, author = {A. Gatalevych}, title = {B\'ezout rings with finite {Krull} dimension}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--5}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a0/} }
A. Gatalevych. B\'ezout rings with finite Krull dimension. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 3-5. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a0/
[1] Brewer J. W., Naude C., Naude G., “On Bézout domains, elementary divisor rings, and pole assignability”, Commun. Algebra, 12:24 (1984), 2987–3003 | DOI | MR | Zbl
[2] Helmer O., “The elementary divisor theorem for certain rings without chain condition”, Bull. Amer. Math. Soc., 49 (1943), 225–236 | DOI | MR | Zbl
[3] Kaplansky I., “Elementary divisor rings and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl
[4] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan, Ann Arbor, 1969 | MR | Zbl
[5] Kaplansky I., Commutative Rings, Univ. of Chicago Press, 1974 | MR | Zbl
[6] Maltis E., “The minimal spectrum of a reduced ring”, Illinois J. Math., 27:3 (1983), 353–391 | MR
[7] Shores T. S., “Modules over semihereditary Bézout rings”, Proc. Amer. Math. Soc., 46 (1974), 211–213 | DOI | MR | Zbl
[8] Vamos P., “The decomposition of finitely generated modules and fractionally self-injective rings”, J. London Math. Soc., 16 (1977), 209–220 | DOI | MR | Zbl
[9] Zabavsky B. V., “Diagonalization of matrices over rings of finite stable rank”, Visnyk Lviv. Univ., 61 (2003), 206–211
[10] Zabavsky B. V., “Fractionally regular Bézout rings”, Mat. Stud., 32:1 (2009), 76–80 | MR | Zbl