B\'ezout rings with finite Krull dimension
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 3-5.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proven that if $R$ is a commutative Bézout ring of Krull dimension $1$, with stable range $2$, then $R$ is an elementary divisor ring.
@article{FPM_2014_19_6_a0,
     author = {A. Gatalevych},
     title = {B\'ezout rings with finite {Krull} dimension},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--5},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a0/}
}
TY  - JOUR
AU  - A. Gatalevych
TI  - B\'ezout rings with finite Krull dimension
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 3
EP  - 5
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a0/
LA  - ru
ID  - FPM_2014_19_6_a0
ER  - 
%0 Journal Article
%A A. Gatalevych
%T B\'ezout rings with finite Krull dimension
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 3-5
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a0/
%G ru
%F FPM_2014_19_6_a0
A. Gatalevych. B\'ezout rings with finite Krull dimension. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 3-5. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a0/

[1] Brewer J. W., Naude C., Naude G., “On Bézout domains, elementary divisor rings, and pole assignability”, Commun. Algebra, 12:24 (1984), 2987–3003 | DOI | MR | Zbl

[2] Helmer O., “The elementary divisor theorem for certain rings without chain condition”, Bull. Amer. Math. Soc., 49 (1943), 225–236 | DOI | MR | Zbl

[3] Kaplansky I., “Elementary divisor rings and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl

[4] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan, Ann Arbor, 1969 | MR | Zbl

[5] Kaplansky I., Commutative Rings, Univ. of Chicago Press, 1974 | MR | Zbl

[6] Maltis E., “The minimal spectrum of a reduced ring”, Illinois J. Math., 27:3 (1983), 353–391 | MR

[7] Shores T. S., “Modules over semihereditary Bézout rings”, Proc. Amer. Math. Soc., 46 (1974), 211–213 | DOI | MR | Zbl

[8] Vamos P., “The decomposition of finitely generated modules and fractionally self-injective rings”, J. London Math. Soc., 16 (1977), 209–220 | DOI | MR | Zbl

[9] Zabavsky B. V., “Diagonalization of matrices over rings of finite stable rank”, Visnyk Lviv. Univ., 61 (2003), 206–211

[10] Zabavsky B. V., “Fractionally regular Bézout rings”, Mat. Stud., 32:1 (2009), 76–80 | MR | Zbl