On the best linear approximation of holomorphic functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 185-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be an open subset of the complex plane $\mathbb C$ and let $E$ be a compact subset of $~\Omega$. The present survey is concerned with linear $n$-widths for the class $H^\infty(\Omega)$ in the space $C(E)$ and some problems on the best linear approximation of classes of Hardy–Sobolev-type in $L^p$-spaces. It is known that the partial sums of the Faber series give the classical method for approximation of functions $f\in H^\infty(\Omega)$ in the metric of $C(E)$ when $E$ is a bounded continuum with simply connected complement and $\Omega$ is a canonical neighborhood of $E$. Generalizations of the Faber series are defined for the case where $\Omega$ is a multiply connected domain or a disjoint union of several such domains, while $E$ can be split into a finite number of continua. The exact values of $n$-widths and asymptotic formulas for the $\varepsilon$-entropy of classes of holomorphic functions with bounded fractional derivatives in domains of tube type are presented. Also, some results about Faber's approximations in connection with their applications in numerical analysis are mentioned.
@article{FPM_2014_19_5_a8,
     author = {Yu. A. Farkov},
     title = {On the best linear approximation of holomorphic functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {185--212},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a8/}
}
TY  - JOUR
AU  - Yu. A. Farkov
TI  - On the best linear approximation of holomorphic functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 185
EP  - 212
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a8/
LA  - ru
ID  - FPM_2014_19_5_a8
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%T On the best linear approximation of holomorphic functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 185-212
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a8/
%G ru
%F FPM_2014_19_5_a8
Yu. A. Farkov. On the best linear approximation of holomorphic functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 185-212. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a8/

[1] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[2] Belyi V. I., “Sovremennye metody geometricheskoi teorii funktsii kompleksnogo peremennogo v zadachakh approksimatsii”, Algebra i analiz, 9:3 (1997), 3–40 | MR | Zbl

[3] Belykh V. N., “Otsenki kolmogorovskoi $\varepsilon$-entropii kompaktnykh mnozhestv beskonechno differentsiruemykh neperiodicheskikh funktsii (k probleme Babenko)”, Dokl. RAN, 452:1 (2013), 7–11 | DOI | MR | Zbl

[4] Vakarchuk S. B., Shabozov M. Sh., “O poperechnikakh klassov funktsii, analiticheskikh v kruge”, Matem. sb., 201:8 (2010), 3–22 | DOI | MR | Zbl

[5] Dodunova L. K., Savikhin S. A., “Polnota podsistemy mnogochlenov Fabera”, Izv. vyssh. uchebn. zaved. Matematika, 2012, no. 9, 3–7 | MR | Zbl

[6] Dragilev M. M., “Ob obschikh bazisakh prostranstv $A(G)$ i $\bar A(\bar G)$”, Sib. matem. zhurn., 40:1 (1999), 69–74 | MR | Zbl

[7] Dynkin E. M., “Konstruktivnaya kharakteristika klassov S. L. Soboleva i O. V. Besova”, Spektralnaya teoriya funktsii i operatorov. II, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 155, 1981, 41–76 | MR | Zbl

[8] Erokhin V. D., “Ob asimptotike $\varepsilon$-entropii analiticheskikh funktsii”, DAN SSSR, 120:5 (1958), 949–952

[9] Erokhin V. D., “Nekotorye novye teoremy ob analiticheskom otobrazhenii mnogosvyaznykh oblastei”, Uspekhi matem. nauk, 15:4 (1960), 203–204

[10] Erokhin V. D., “Otsenki $\varepsilon$-entropii i lineinykh poperechnikov nekotorykh klassov analiticheskikh funktsii”, Issledovaniya po sovremennym problemam teorii funktsii kompleksnogo peremennogo, ed. A. I. Markushevich, Fizmatgiz, M., 1961, 159–167

[11] Erokhin V. D., “O nailuchshei lineinoi approksimatsii funktsii, analiticheski prodolzhimykh s dannogo kontinuuma v dannuyu oblast”, Uspekhi matem. nauk, 23:1 (1968), 91–132 | MR | Zbl

[12] Konovalov V. N., “K zadache o poperechnikakh klassov analiticheskikh funktsii”, Ukr. matem. zhurn., 30:5 (1978), 668–670 | MR | Zbl

[13] Osipenko K. Yu., “Optimalnaya interpolyatsiya analiticheskikh funktsii”, Matem. zametki, 12:4 (1972), 465–476 | MR | Zbl

[14] Pekarskii A. A., “Ratsionalnye priblizheniya funktsii s proizvodnymi iz prostranstva V. I. Smirnova”, Algebra i analiz, 13:2 (2001), 165–190 | MR | Zbl

[15] Peller V. V., “Ratsionalnaya approksimatsiya v $L_p$ i preobrazovaniya Fabera”, Zap. nauch. sem. LOMI, 157, 1987, 70–75 | MR

[16] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR

[17] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964 | MR

[18] Suetin P. K., “Poryadkovoe sravnenie razlichnykh norm mnogochlenov v kompleksnoi oblasti”, Matem. zap. Uralsk. un-ta, 5:4 (1966), 91–100 | MR | Zbl

[19] Suetin P. K., Ryady po mnogochlenam Fabera, Nauka, M., 1984 | MR

[20] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | DOI | MR | Zbl

[21] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. issled., 14, 1987, 103–260 | MR | Zbl

[22] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi ploskosti, Mir, M., 1980

[23] Farkov Yu. A., “Asimptoticheskie svoistva obobschënnykh bazisnykh funktsii Fabera–Erokhina”, Sib. matem. zhurn., 22:4 (1981), 173–189 | MR | Zbl

[24] Farkov Yu. A., “Bazisnye funktsii Fabera–Erokhina mnogikh peremennykh i otsenki $\varepsilon$-entropii”, Izv. vyssh. uchebn. zaved. Matematika, 1982, no. 3, 81–88 | MR | Zbl

[25] Farkov Yu. A., “Operatory Fabera–Erokhina i izomorfizmy nekotorykh prostranstv analiticheskikh funktsii”, Izv. vyssh. uchebn. zaved. Matematika, 1982, no. 7, 81–83 | MR | Zbl

[26] Farkov Yu. A., “Bazisnye funktsii Fabera–Erokhina v okrestnosti neskolkikh kontinuumov”, Matem. zametki, 36:6 (1984), 883–892 | MR | Zbl

[27] Farkov Yu. A., “O poperechnikakh klassov analiticheskikh funktsii s ogranichennymi proizvodnymi”, Izv. vyssh. uchebn. zaved. Matematika, 1988, no. 4, 84–86 | MR | Zbl

[28] Farkov Yu. A., “Poperechniki klassov Khardi i Bergmana v share iz $\mathbb C^n$”, Uspekhi matem. nauk, 45:5 (1990), 197–198 | MR | Zbl

[29] Farkov Yu. A., “Ob $\varepsilon$-entropii klassov golomorfnykh funktsii”, Matem. zametki, 68:2 (2000), 286–293 | DOI | MR | Zbl

[30] Farkova N. A., “Primenenie mnogochlenov Fabera k resheniyu sistem lineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1634–1648 | MR | Zbl

[31] Farkova N. A., “Primenenie mnogochlenov Fabera k vychisleniyu sobstvennykh znachenii”, Izv. vyssh. uchebn. zaved. Matematika, 1992, no. 9, 65–72 | MR | Zbl

[32] Tsvil M. M., “O skhodimosti sharovykh srednikh dvoinykh ryadov Fure–Fabera”, Izv. vyssh. uchebn. zaved. Severo-kavkazskii reg. Estestv. nauki, 11 (2005), 63–69 | Zbl

[33] Shvedenko S. V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge, polikruge i share”, Itogi nauki i tekhn. Ser. Matem. anal., 23, 1985, 3–124 | MR | Zbl

[34] Andrievskii V., Blatt H.-P., “On the distribution of zeros of Faber polynomials”, Comput. Methods Funct. Theory, 11 (2011), 263–282 | DOI | MR | Zbl

[35] Borisov A. G., Shabanov S. V., “Wave packet propagation by the Faber polynomial approximation in electrodynamics of passive media”, J. Comput. Phys., 216 (2006), 391–402 | DOI | MR | Zbl

[36] Bouali A., “Faber polynomials, Cayley–Hamilton equation and Newton symmetric functions”, Bull. Sci. Math., 130 (2006), 49–70 | DOI | MR | Zbl

[37] Bruj I., Schmieder G., “Best approximation and saturation on domains bounded by curves of bounded rotation”, J. Approx. Theory, 100 (1999), 157–182 | DOI | MR | Zbl

[38] Carney A., Etropolski A., Pitman S., “Powers of the eta-function and Hecke operators”, Internat. J. Number Theory, 8 (2012), 599–611 | DOI | MR | Zbl

[39] Devys O., “Faber polynomials and spectrum localisation”, Comput. Methods Funct. Theory, 13 (2013), 107–131 | DOI | MR | Zbl

[40] Ding H., Gross K. I., Richards D. S. P., “The $N$-widths of spaces of holomorphic functions on bounded symmetric domains of tube type. I”, J. Approx. Theory, 104 (2000), 121–141 | DOI | MR | Zbl

[41] Duren P. L., “Distortion in certain conformal mappings of an annulus”, Michigan Math. J., 10:4 (1963), 431–441 | DOI | MR | Zbl

[42] Dyn'kin E. M., “The rate of polynomial approximation in the complex domain”, Complex Analysis and Spectral Theory, Lect. Notes Math., 864, Springer, Berlin, 1981, 90–142 | DOI | MR

[43] Faraut J., Koranyi A., Analysis on Symmetric Cones, Oxford Univ. Press, New York, 1994 | MR | Zbl

[44] Farkov Yu. A., “The $N$-widths of Hardy–Sobolev spaces of several complex variables”, J. Approx. Theory, 75 (1993), 183–197 | DOI | MR | Zbl

[45] Farkov Yu. A., “$n$-widths, Faber expansion, and computation of analytic functions”, J. Complexity, 12 (1996), 58–79 | DOI | MR | Zbl

[46] Fisher S. D., Micchelli C. A., “The $n$-width of sets of analytic functions”, Duke Math. J., 47 (1980), 789–801 | DOI | MR | Zbl

[47] Frerick L., Müller J., “Polynomial approximation on compact sets bounded by Dini-smooth arcs”, Comput. Methods Funct. Theory, 3 (2003), 273–284 | DOI | MR | Zbl

[48] Gaier D., “On the decrease of Faber polynomials in domains with piecewise analytic boundary”, Analysis, 21 (2001), 219–229 | DOI | MR | Zbl

[49] Ganelius T. H., “Rational approximation in the complex plane and on the line”, Ann. Acad. Sci. Fenn. Ser. AI Math., 2 (1976), 129–145 | DOI | MR | Zbl

[50] Garaus I., “The numerical solution for system of singular integro-differential equations by Faber–Laurent polynomials”, Numerical Analysis and Its Applications, Third Int. Conf., NAA 2004 (Rousse, Bulgaria, June 29 – July 3, 2004), Revised Selected Papers, Lect. Notes Comput. Sci., 3401, eds. Zh. Li, L. Vulkov, J. Wásniewski, Springer, Berlin, 2005, 219–223 | DOI

[51] Henrici P., Applied and Computation Complex Analysis, v. 3, Wiley, New York, 1986 | MR

[52] Hübner O., “Die Faktorisierung konformer Abbildungen und Anwendungen”, Math. Z., 99 (1967), 193–206 | DOI | MR

[53] Jafarov S. Z., “The inverse theorem of approximation theory in Smirnov–Orlicz classes”, Math. Inequal. Appl., 15:4 (2012), 835–844 | MR | Zbl

[54] Novati P., “Solving linear initial value problems by Faber polynomials”, Numerical Linear Algebra Appl., 10 (2003), 247–270 | DOI | MR | Zbl

[55] Osipenko K. Y., “Exact $n$-widths of Hardy–Sobolev classes”, Constr. Approx., 13:1 (1997), 17–27 | MR | Zbl

[56] Starke G., Varga R. S., “A hybrid Arnoldi–Faber iterative method for nonsymmetric systems of linear equations”, Numer. Math., 64 (1993), 231–240 | DOI | MR

[57] Totik V., “Chebyshev polynomials on a system of curves”, J. Anal. Math., 118:1 (2012), 317–338 | DOI | MR | Zbl

[58] Walsh J. L., “Sur l'approximation par fonctions rationnelles et par fonctions holomorphes bornées”, Ann. Mat., 39:4 (1955), 267–277 | DOI | MR | Zbl

[59] Walsh J. L., “On the conformal mapping of multiply connected regions”, Trans. Amer. Math. Soc., 82:1 (1956), 128–146 | DOI | MR | Zbl

[60] Walsh J. L., “A generalization of Faber's polynomials”, Math. Ann., 136:1 (1958), 23–33 | DOI | MR

[61] Walsh J. L., Sewell W. E., “Sufficient conditions for various degrees of approximation by polynomials”, Duke Math. J., 6:3 (1940), 658–705 | DOI | MR | Zbl

[62] Wójcik P., Sheshko M. A., Sheshko S. M., “Application of Faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel”, Differ. Equations, 49:2 (2013), 198–209 | DOI | MR | Zbl

[63] Zaharyuta V. P., “Kolmogorov problem on widths asymptotics and pluripotential theory”, Functional Analysis and Complex Analysis (September 17–21, 2007, Sabancı University, İstanbul, Turkey), Contemp. Math., 481, ed. A. Aytuna, Amer. Math. Soc., 2009, 171–196 | DOI | MR

[64] Zakharyuta V., “On asymptotics of entropy of a class of analytic functions”, Funct. Approx. Comment. Math., 44:2 (2011), 307–315 | DOI | MR | Zbl

[65] Zhang J., “Symbolic and numerical computation on Bessel functions of complex argument and large magnitude”, J. Comput. Appl. Math., 75 (1996), 99–118 | DOI | MR | Zbl