Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_5_a6, author = {Yu. V. Malykhin}, title = {Asymptotic properties of {Chebyshev} splines with fixed number of knots}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {143--166}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a6/} }
Yu. V. Malykhin. Asymptotic properties of Chebyshev splines with fixed number of knots. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 143-166. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a6/
[1] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR
[2] Malozemov V. N., Pevnyi A. B., Polinomialnye splainy, Izd-vo Leningrad. un-ta, L., 1986 | MR
[3] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C[-1,1]$”, Matem. sb., 80(122):2(10) (1969), 290–304 | MR | Zbl
[4] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR
[5] Borwein P. B., Erdélyi T., Polynomials and Polynomial Inequalities, Grad. Texts Math., Springer, Berlin, 1995 | DOI | MR | Zbl
[6] Hobby C. R., Rice J. R., “A moment problem in $L_1$ approximation”, Proc. Amer. Math. Soc., 16:4 (1965), 665–670 | MR | Zbl
[7] Karlin S., “Some variational problems on certain Sobolev spaces and perfect splines”, Bull. Amer. Math. Soc., 79:1 (1973), 124–128 | DOI | MR | Zbl
[8] Pinkus A., “A simple proof of the Hobby–Rice theorem”, Proc. Amer. Math. Soc., 60 (1976), 82–84 | DOI | MR
[9] Schoenberg I. J., Cardinal Spline Interpolation, SIAM, Philadelphia, 1973 | MR | Zbl
[10] Weisstein E. W., Bernoulli Number, http://mathworld.wolfram.com/BernoulliNumber.html
[11] Weisstein E. W., Euler Number, http://mathworld.wolfram.com/EulerNumber.html
[12] Weisstein E. W., Secant, http://mathworld.wolfram.com/Secant.html
[13] Weisstein E. W., Tangent, http://mathworld.wolfram.com/Tangent.html