Asymptotic properties of Chebyshev splines with fixed number of knots
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 143-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

V. M. Tikhomirov expressed Kolmogorov widths of the class $W^r:=W^r_\infty[-1,1]$ in the space $C:=C[-1,1]$ as a norm of special splines: $d_N(W^r,C)=\|x_{N-r,r}\|_C$, $N\ge r$; these splines were named Chebyshev splines. The function $x_{n,r}$ is a perfect spline of order $r$ with $n$ knots. We study the asymptotic behaviour of Chebyshev splines for $r\to\infty$ and fixed $n$. We calculate the asymptotics of knots and the $C$-norm of $x_{n,r}$ and prove that $x_{n,r}/x_{n,r}(1)=T_{n+r}+o(1)$. As a corollary, we obtain that $d_{n+r}(W^r,C)/d_r(W^r,C)\sim A_nr^{-n/2}$ as $r\to\infty$.
@article{FPM_2014_19_5_a6,
     author = {Yu. V. Malykhin},
     title = {Asymptotic properties of {Chebyshev} splines with fixed number of knots},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {143--166},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a6/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
TI  - Asymptotic properties of Chebyshev splines with fixed number of knots
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 143
EP  - 166
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a6/
LA  - ru
ID  - FPM_2014_19_5_a6
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%T Asymptotic properties of Chebyshev splines with fixed number of knots
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 143-166
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a6/
%G ru
%F FPM_2014_19_5_a6
Yu. V. Malykhin. Asymptotic properties of Chebyshev splines with fixed number of knots. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 143-166. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a6/

[1] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[2] Malozemov V. N., Pevnyi A. B., Polinomialnye splainy, Izd-vo Leningrad. un-ta, L., 1986 | MR

[3] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C[-1,1]$”, Matem. sb., 80(122):2(10) (1969), 290–304 | MR | Zbl

[4] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[5] Borwein P. B., Erdélyi T., Polynomials and Polynomial Inequalities, Grad. Texts Math., Springer, Berlin, 1995 | DOI | MR | Zbl

[6] Hobby C. R., Rice J. R., “A moment problem in $L_1$ approximation”, Proc. Amer. Math. Soc., 16:4 (1965), 665–670 | MR | Zbl

[7] Karlin S., “Some variational problems on certain Sobolev spaces and perfect splines”, Bull. Amer. Math. Soc., 79:1 (1973), 124–128 | DOI | MR | Zbl

[8] Pinkus A., “A simple proof of the Hobby–Rice theorem”, Proc. Amer. Math. Soc., 60 (1976), 82–84 | DOI | MR

[9] Schoenberg I. J., Cardinal Spline Interpolation, SIAM, Philadelphia, 1973 | MR | Zbl

[10] Weisstein E. W., Bernoulli Number, http://mathworld.wolfram.com/BernoulliNumber.html

[11] Weisstein E. W., Euler Number, http://mathworld.wolfram.com/EulerNumber.html

[12] Weisstein E. W., Secant, http://mathworld.wolfram.com/Secant.html

[13] Weisstein E. W., Tangent, http://mathworld.wolfram.com/Tangent.html