Boolean-valued analysis of order-bounded operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 89-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey of some recent applications of Boolean-valued models of set theory to the study of order-bounded operators in vector lattices.
@article{FPM_2014_19_5_a4,
     author = {A. G. Kusraev and S. S. Kutateladze},
     title = {Boolean-valued analysis of order-bounded operators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {89--126},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a4/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - S. S. Kutateladze
TI  - Boolean-valued analysis of order-bounded operators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 89
EP  - 126
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a4/
LA  - ru
ID  - FPM_2014_19_5_a4
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A S. S. Kutateladze
%T Boolean-valued analysis of order-bounded operators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 89-126
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a4/
%G ru
%F FPM_2014_19_5_a4
A. G. Kusraev; S. S. Kutateladze. Boolean-valued analysis of order-bounded operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 89-126. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a4/

[1] Abramovich Yu. A., Veksler A. I., Koldunov A. V., “Operatory, sokhranyayuschie diz'yunktnost”, DAN SSSR, 248:5 (1979), 1033–1036 | MR | Zbl

[2] Abramovich Yu. A., Veksler A. I., Koldunov A. V., “Operatory, sokhranyayuschie diz'yunktnost, ikh nepreryvnost i multiplikativnoe predstavlenie”, Lineinye operatory i ikh prilozheniya, Mezhvuz. sb. nauch. tr., LGPI im. A. I. Gertsena, Leningrad, 1981, 3–34

[3] Akilov G. P., Kolesnikov E. V., Kusraev A. G., “Lebegovo rasshirenie polozhitelnogo operatora”, DAN SSSR, 298:3 (1988), 521–524 | MR | Zbl

[4] Akilov G. P., Kolesnikov E. V., Kusraev A. G., “Poryadkovo nepreryvnoe rasshirenie polozhitelnogo operatora”, Sib. matem. zhurn., 29:5 (1988), 24–55 | MR

[5] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, Novosibirsk, 1978 | MR

[6] Vladimirov D. A., Bulevy algebry, Nauka, M., 1969 | MR

[7] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, GIFML, M., 1961

[8] Vulikh B. Z., Lozanovskii G. Ya., “O predstavlenii vpolne lineinykh i regulyarnykh funktsionalov v poluuporyadochennykh prostranstvakh”, Matem. sb., 84(126):3 (1971), 331–352 | MR | Zbl

[9] Gordon E. I., “Veschestvennye chisla v bulevoznachnykh modelyakh teorii mnozhestv i $K$-prostranstva”, DAN SSSR, 237:4 (1977), 773–775 | MR | Zbl

[10] Gordon E. I., “$K$-prostranstva v bulevoznachnykh modelyakh teorii mnozhestv”, DAN SSSR, 258:4 (1981), 777–780 | MR | Zbl

[11] Gordon E. I., “K teoremam o sokhranenii sootnoshenii v $K$-prostranstvakh”, Sib. matem. zhupn., 23:5 (1982), 55–65 | MR | Zbl

[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR

[13] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Funktsionalnyi analiz v poluuporyadochennykh prostranstvakh, Gostekhizdat, M.–L., 1950

[14] Koen P. Dzh., Teoriya modelei i kontinuum-gipoteza, Mir, M., 1973

[15] Kusraev A. G., “Obschie formuly dezintegrirovaniya”, DAN SSSR, 265:6 (1982), 1312–1316 | MR | Zbl

[16] Kusraev A. G., “Poryadkovo nepreryvnye funktsionaly v bulevoznachnykh modelyakh teorii mnozhestv”, Sib. matem. zhurn., 25:1 (1984), 69–79 | MR | Zbl

[17] Kusraev A. G., “Chislovye sistemy v bulevoznachnykh modelyakh teorii mnozhestv”, VIII Vsesoyuz. konf. po mat. logike, M., 1986, 99

[18] Kusraev A. G., Mazhoriruemye operatory, Nauka, M., 2003 | MR

[19] Kusraev A. G., “O nerasshiryayuschikh operatorakh”, Vladikavk. matem. zhurn., 6:3 (2004), 47–58 | MR | Zbl

[20] Kusraev A. G., “Avtomorfizmy i differentsirovaniya v rasshirennoi kompleksnoi $f$-algebre”, Sib. matem. zhurn., 47:1 (2006), 97–107 | MR | Zbl

[21] Kusraev A. G., “Analiz, algebra i logika v teorii operatorov”, Kompleksnyi analiz. Teoriya operatorov. Matematicheskoe modelirovanie, eds. Yu. F. Korobeinik, A. G. Kusraev, Izd-vo VNTs RAN, Vladikavkaz, 2006, 171–204

[22] Kusraev A. G., Kutateladze S. S., Nestandartnye metody analiza, Nauka, Novosibirsk, 1990 | MR

[23] Kusraev A. G., Kutateladze S. S., Subdifferentsialy. Teoriya i prilozheniya, Nauka, Novosibirsk, 1992 | MR

[24] Kusraev A. G., Kutateladze S. S., Bulevoznachnyi analiz, Izd-vo IM SO RAN, Novosibirsk, 1999 | MR

[25] Kusraev A. G., Kutateladze S. S., Vvedenie v bulevoznachnyi analiz, Nauka, M., 2005 | MR

[26] Kusraeva Z. A., “Nerasshiryayuschie algebraicheskie operatory”, Vladikavk. matem. zhurn., 15:3 (2013), 54–57 | Zbl

[27] Kutateladze S. S., “O raznostyakh reshëtochnykh gomomorfizmov”, Sib. matem. zhurn., 46:2 (2005), 390–393 | MR | Zbl

[28] Kutateladze S. S., “O podprostranstvakh Grotendika”, Sib. matem. zhurn., 46:3 (2005), 620–624 | MR | Zbl

[29] Abramovich Y. A., Kitover A. K., “$d$-independence and $d$-bases in vector lattices”, Rev. Roumaine Math. Pures Appl., 44 (1999), 667–682 | MR | Zbl

[30] Abramovich Y. A., Kitover A. K., Inverses of Disjointness Preserving Operators, Mem. Amer. Math. Soc., 679, Amer. Math. Soc., Providence, 2000 | MR | Zbl

[31] Abramovich Y. A., Kitover A. K., “$d$-independence and $d$-bases”, Positivity, 7:1 (2003), 95–97 | DOI | MR | Zbl

[32] Aczél J., Dhombres J., Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[33] Aliprantis C. D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985 | MR | Zbl

[34] Bell J. L., Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York, 1985 | MR | Zbl

[35] Bernau S. J., Huijsmans C. B., de Pagter B., “Sums of lattice homomorphisms”, Proc. Amer. Math. Soc., 115:1 (1992), 151–156 | DOI | MR | Zbl

[36] Boulabiar K., “Recent trends on order bounded disjointness preserving operators”, Irish Math. Soc. Bull., 62 (2008), 43–69 | MR | Zbl

[37] Boulabiar K., Buskes G., Sirotkin G., “Algebraic order bounded disjointness preserving operators and strongly diagonal operators”, Integr. Equ. Oper. Theory, 54 (2006), 9–31 | DOI | MR | Zbl

[38] Bourgain J., “Real isomorphic complex Banach spaces need not be complex isomorphic”, Proc. Amer. Math. Soc., 96 (1986), 221–226 | DOI | MR | Zbl

[39] Cooper J. L. B., “Coordinated linear spaces”, Proc. London Math. Soc., 3 (1953), 305–327 | DOI | MR | Zbl

[40] Dieudonné J., “Complex structures on real Banach spaces”, Proc. Amer. Math. Soc., 3 (1952), 162–164 | DOI | MR | Zbl

[41] Dodds P. G., Huijsmans C. B., de Pagter B., “Characterizations of conditional expectation-type operators”, Pacific J. Math., 141:1 (1990), 55–77 | DOI | MR | Zbl

[42] Duhoux M., Meyer M., “A new proof of the lattice structure of orthomorphisms”, J. London Math. Soc., 25:2 (1982), 375–378 | DOI | MR | Zbl

[43] Duoglas R., “Contractive projections on $L_1$ space”, Pacific J. Math., 15:2 (1965), 443–462 | DOI | MR

[44] Gowers W. T., Maurey B., “The unconditional basic sequence problem”, J. Amer. Math. Soc., 6 (1993), 851–874 | DOI | MR | Zbl

[45] Gowers W. T., Maurey B., “Banach spaces with small spaces of operators”, Math. Ann., 307 (1997), 543–568 | DOI | MR | Zbl

[46] Grothendieck A., “Une caractérisation vectorielle-métrique des espae $L^1$”, Can. J. Math., 4 (1955), 552–561 | DOI | MR

[47] Gutman A. E., “Locally one-dimensional $K$-spaces and $\sigma$-distributive Boolean algebras”, Sib. Adv. Math., 5:2 (1995), 99–121 | MR

[48] Gutman A. E., “Disjointness preserving operators”, Vector Lattices and Integral Operators, ed. S. S. Kutateladze, Kluwer, Dordrecht, 1996, 361–454

[49] Gutman A. E., Kusraev A. G., Kutateladze S. S., The Wickstead Problem, Preprint No 3, IAMI VSC RAS, Vladikavkaz, 2007 | MR

[50] Huijsmans C. B., Wickstead A. W., “The inverse of band preserving and disjointness preserving operators”, Indag. Math., 3:2 (1992), 179–183 | DOI | MR | Zbl

[51] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities, Birkhäuser, Basel, 2009 | MR | Zbl

[52] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000 | MR | Zbl

[53] Kusraeva Z. A., Involutions and complex structures on real vector lattices (to appear)

[54] Lacey H. E., The Isometric Theory of Classical Banach Spaces, Springer, Berlin, 1974 | MR | Zbl

[55] Lindenstrauss J., Wulbert D. E., “On the classification of the Banach spaces whose duals are $L^1$-spaces”, J. Funct. Anal., 4 (1969), 332–349 | DOI | MR | Zbl

[56] Luxemburg W. A. J., Schep A., “A Radon–Nikodým type theorem for positive operators and a dual”, Indag. Math., 40 (1978), 357–375 | DOI | MR

[57] Luxemburg W. A. J., de Pagter B., “Maharam extension of positive operators and $f$-algebras”, Positivity, 6:2 (2002), 147–190 | DOI | MR | Zbl

[58] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. 1, North-Holland, Amsterdam, 1971 | Zbl

[59] Maharam D., “The representation of abstract integrals”, Trans. Amer. Math. Soc., 75:1 (1953), 154–184 | DOI | MR | Zbl

[60] Maharam D., “On kernel representation of linear operators”, Trans. Amer. Math. Soc., 79:1 (1955), 229–255 | DOI | MR | Zbl

[61] Maharam D., “On positive operators”, Conf. Modern Analysis and Probability, Contemp. Math., 26, Amer. Math. Soc., Providence, 1984, 263–277 | DOI | MR

[62] McPolin P. T. N., Wickstead A. W., “The order boundedness of band preserving operators on uniformly complete vector lattices”, Math. Proc. Cambridge Philos. Soc., 97:3 (1985), 481–487 | DOI | MR | Zbl

[63] Meyer M., “Le stabilisateur d'un espace vectoriel réticulé”, C. R. Acad. Sci. Ser. A, 283 (1976), 249–250 | MR | Zbl

[64] Meyer-Nieberg P., Banach Lattices, Springer, Berlin, 1991 | MR | Zbl

[65] Schaefer H. H., Banach Lattices and Positive Operators, Springer, Berlin, 1974 | MR | Zbl

[66] Schwarz H.-V., Banach Lattices and Operators, Teubner, Leipzig, 1984 | MR | Zbl

[67] Semadeni Zb., Banach Spaces of Continuous Functions, Polish Sci. Publ., Warszawa, 1971 | MR | Zbl

[68] Sikorski R., Boolean Algebras, Springer, Berlin, 1964 | MR | Zbl

[69] Solovay R., Tennenbaum S., “Iterated Cohen extensions and Souslin's problem”, Ann. Math., 94:2 (1972), 201–245 | DOI | MR

[70] Szarek S., “A superreexive Banach space which does not admit complex structure”, Proc. Amer. Math. Soc., 97 (1986), 437–444 | DOI | MR | Zbl

[71] Takeuti G., Two Applications of Logic to Mathematics, Iwanami, Tokyo; Princeton Univ. Press, Princeton, 1978 | MR | Zbl

[72] Takeuti G., “A transfer principle in harmonic analysis”, J. Symb. Logic, 44:3 (1979), 417–440 | DOI | MR | Zbl

[73] Takeuti G., “Boolean-valued analysis”, Applications of Sheaves, Proc. Res. Symp. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Lect. Notes Math., 753, Springer, Berlin, 1979, 714–731 | DOI | MR

[74] Takeuti G., Zaring W. M., Axiomatic Set Theory, Springer, New York, 1973 | MR | Zbl

[75] Wickstead A. W., “Representation and duality of multiplication operators on Archimedean Riesz spaces”, Compositio Math., 35:3 (1977), 225–238 | MR | Zbl

[76] Zaanen A. C., Riesz Spaces, v. 2, North-Holland, Amsterdam, 1983 | MR | Zbl